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Dynamics of Curved Beams

Discussions  on  vibrations  of  beams,  we  have  till  now  looked  at  only  straight  beams.

However, there are various places you find a curve beams. For example, in arches, in bridges,

also we have rings which can be treated as beams, which are curved. So today we are going

to initiate some discussions on the dynamics of curved beams. So today we are going to look

at essentially the modelling aspects of a curved beam. 

Now the first and the fundamental difference between a straight beam and a curved beam that

we will see is, because of this curvature the axial motion or the circumferential motion is

coupled to the transfers or the radial motion of the beam. So there is a coupling between these

2 directions, so we can no longer treat using 1 field variable for our deflection. So we must

use 2 field variables.
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One for tracking the circumferential or the axial motion and the other is for the radial motion.

So  as  with  any  beam theory,  we  are  going  to  make  some  assumptions  to  simplify  our

modelling  process.  So the first  assumption;  so the first  assumption,  we make is  that  this

whole the curvature of the beam is; so we will look at a very special situation, where the

curvature of the beam is constant and the beam is planar.



So the second assumption we make is the deflection is also planar. Thirdly, we will assume

that the deflection is small compared to the thickness; compared to the thickness of the beam,

the deflection is small and we also assume that the thickness itself is small compared to the

curvature. Finally, we assume that the Euler-Bernoulli hypothesis holds and along with that

we say that there is no shear. 
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So under these assumptions, we are going to model a curve beam, so we are going to restrict

ourselves to the case of a beam with constant thickness. So let us consider; so here I have

drawn a ring really, but it could be a part of a ring. We consider a small element of this ring,

so this is the radial direction and the field variable will be indicated by w theta, t and this is

the theta direction, where we; so the radius of this circle the dashed circle, which we will

consider as the neutral fiber that has a radius R, which is constant as we have assumed.

Now let us look at this little element, now we are going to look at the deformation kinematics

of this little element, so let me draw; so when you consider the deformation kinematics, you

can understand that, so this is at an angle theta and the small this is the small angle, d theta.

Now initially the length of any fiber in this element at a height z, so the length of this fiber

before deformation.

Let me indicate this by ds is, we are looking at a fiber, which is at a height z from this neutral

fiber. So ds is the length of this fiber before any deformation is R + z times d theta. Now

when this element deforms now you can imagine that you can consider this deformation in 2



steps; one is its axial elongation, so this moves from so any point, which was here moves

here. So this angle is nothing but u over r.

So u is the deflection of this point in the circumferential direction, so as we have mentioned

that this is u. The second deformation is that, you can take this is that this defects out radially,

so let me draw that first, so here is P2 and now here is P3, so this point P2 moves to this point

P3. Now here again, there is this angle which can now be written like this that, this is the

slope of the central line of this element.

When there  is  deflection  in  the  radial  direction  or  the  transverse direction  and which  is

captured by this field variable w. So, del w del theta one over r, so that is nothing but that

slope of the central line, because w is the deflection of the neural axis, so that multiplied by z,

z is the distance of this point from this neutral fiber, so this time z is the deflection, so this is

nothing but the angle for small deflections.

We know that this is the angle times the radius gives the linear deflection of point P, so it goes

from P2 to P3. So essentially this linear distance is what is being measured by this quantity

and when you divide this by R + z, that gives us this small angle. So therefore now when you

combine these 2 deflections then the total angle, so this went; this line went from here to here

and now this line has travel back.

So this angle; let us say is theta prime, then theta prime is given as theta + u/R because of this

motion, circumferential motion and minus this angle. So that is theta prime. So therefore after

deflection, ds prime, if we call it ds prime then that is; that is approximately; this is R + z +

w; is the transverse or the radial deflection so that is the new radius times d theta prime, so

we have to calculate d theta prime, so that turns out to be d theta +; since r is the constant.

So del u d theta times d theta minus; so that, so this is the expression of ds prime.

(Refer Slide Time: 17:05)



And therefore, if we calculate the strain now, in that fiber at height z from the neutral plane

that can be calculated as ds prime minus ds, over ds and if you do this calculation, it turns out

to be; and which can be approximated by considering that z over R is much, much smaller

than 1, so you can take this R and write this as 1+z over R and take into the numerator and

you leave out terms which are quadratic z over R. 

So then it can be simplified, so that is the strain in the fiber. Now using this strain, we can use

Hooks law to write the stress as Young’s modulus times the fiber strain so that is going to

give as the stress in the fiber. Now these stresses can be integrated over the cross sectional

area of the beam to obtain the force resultants.  So let  us calculate  the various force and

moment resultant.

So let me first draw out this free body diagram of; so this is the little element and we have the

shear force on this phase. The bending moment and the circumferential forces, now let me

calculate this stress resultants, so N is nothing but integral over the area, stress times the area

and if you substitute these expressions and calculate this it turns out to be; since there is a z

turn here.

So when you integrate over the area since this is already measured from the neutral fiber, so

this term will vanish. So you are left with this, so this is the expression of the normal force on

the phase. Then we have this bending moment, which is once again we calculate as we did for

the beam. Now because of this additional z, this becomes z square and that makes it newer

function.
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So whereas this becomes an odd function that cancels off, so you are left with contributions

only from this term, so that is the bending moment. Now using and the shear forces, as I have

mentioned that we did not consider shear, so it is infinitely rigid in shear so that will come out

from the equations of equilibrium. So let us now start writing the equations of equilibrium, so

first we will write the circumferential equation.

So that reads, so rho A is the mass per unit length, so Rd theta is the small length of that

element, so this is mass of the little element times u is the circumferential motion or the field

variable,  so  the  acceleration  and  that  must  be  equal  to  the  forces  in  the  circumferential

direction, so let us look at refer to this figure once again. So in the circumferential direction

we have, so N theta + d theta can be written as N + del N del theta to d theta.

And this minus, so this in to cosine of this small angle, so that is small, so that is taken as

1minus N, because of this; + because of the shear force, for example here it is this into sin of

this small angle which is d theta over 2, so that is almost d theta over 2 and +, we have this

again. So therefore if you divide by d theta and drop terms smaller than the first order then

you can easily write this equation. 

So this is the equation of motion for the circumferential;  in the circumferential  direction.

Next we look at the radial direction, so once again; rho A R d theta is the mas of the little

element  times  the  acceleration  in  the  transverse  or  the  radial  direction  must  be  =  the



summation of all forces in the radial direction. So this is what we have. So you can write this

as so v, then there is this normal force, which is towards the centre and so this negative.

And there is a projection, so these are the forces in the radial direction so that implies, so this

is the equation of motion in the radial direction. Next we will look at the rotational dynamics

of this element;  we will neglect the rotational inertia of this element,  so in that case this

equation actually boils down to only moment balance about the centre of mass of this element

which can be written as, so M is this moment.

And we have 2 contributions from these shear forces about the centre of mass so that can be

combine and written as, so this is R theta over 2 and this is also R theta over 2 and they

produce moment in the same direction, so this V times R d theta, so that must be =0, so that

implies, so that is what we are obtained from moment balance. Now we are going to combine

these equations, so essentially we are going to eliminate this V and also replace this N.
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So if you do that, then you get the equations of motion. so these are the equations of motion 

for the beam with constant curvature R.
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Now next we also look at the variational formulation for this, this we will need when we do

an approximate calculations using for example Ritz method. So let us look at the variational

formulation so we start with by writing the kinetic energy, one half the mass of the little

element times the velocity square.

And this integrated over the full beam, so that is the kinetic energy. Similarly, now we derive

the potential energy, which is nothing but half, now we know from theory of elasticity that

the energy per unit volume is stress times the strain, so one half stress times the strain for

linear theory so stress is Young’s modulus times the strain times the strain and so this per unit

volume. So we integrate first over the area and then over the length of the beam. 

Now we will substitute the expression of this epsilon and that turns out to be so then V, so

this bracketed term is the strain epsilon, so that squared dA and this; and there was one, one

over R in the strain expressions so that becomes 1 over R square. Now if you squared this,

these terms, so this will give w + del u d theta whole square and that when integrated over the

area, so these terms will have nothing to do with the area.

So it is the area itself so we have; so that is the contribution from the square of this term, then

there is the square of this terms, so you will have z square and you have R power 4 and here

there is a R, so that will 1 over Rq and z square integrated over the area that is going to be the

second moment of the area, so the square of the second term is going to give us; then there is

a third term 2 times this into this and that is linear in z.



And when you integrate over the area, since z is measured already from the neutral axis or

neutral plane so that term vanishes, so these are the terms in the potential energy expression.

Now to move on further, before we move further, let us make a little bit of simplifications

using  certain  redefinition.  So  let  me  redefined  time,  like  this  is;  so  this  is  the  non-

dimensional time tau.

The  non-dimensional  circumferential  displacement  and  a  non-dimensional  transverse  or

radial displacement w tilde and I will also define the slenderness ratio, which will be; I will

defined like this. So, the radius of curvature of the beam divided by the radius of gyration of

cross section, so that reflects the slenderness of the beam. Now if you use these expressions

then the Lagrangian can be written as; so integrated over the length of the beam.
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So this is tau, so that is the Lagrangian of the system. Now we use the Hamilton's principle to

derive  the  equation  of  motion  which  says  that  this  must  vanish,  the  variation  of  this

Lagrangian of this action integral must be 0. So if you do that, then using the expression of

the Lagrangian that we have just now derived, I will drop that in these calculations now. So

this must vanish, now this has to be integrated by parts with respect to time, these 2 terms.

And here we have to integrate by parts with respect to theta in these 3 terms. So if you do

that, then finally when you get the boundary terms and the variation over the domain, so this

is; this integral so here you have the limits over the domain of the beam, so it is 0 to some

angles, let say theta bar and +; so this is what you will obtain. Now from here, it is easy to see

that this using standard arguments, we can see that this integral must vanish.



And similarly this integral must vanish delta u and delta w being independence, so we have

the equations of motion.  So these are the 2 equations of motion,  which we have derived

earlier as well in a slightly different form. Now you can once again see the coupling between

the circumferential and the radial directions. Now here since this is non- dimensional these

equations are non- dimensionalised, you can look at the contribution of these terms in the

equation. 

Now if the beam is very, very slender, which means slenderness ratio is very high, then these

terms will become insignificant. In that case the equations will get simplifies, so you have

only 3 terms in each equation, which you can then try to solve. But if the beam is not slow

slender in that case these terms will also contribute in the dynamics. Now let us look at the

boundary conditions.
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So there obtained from, so from boundary terms we have a theta =0 and theta bar, so we must

have this=0, or u must be =0, either the circumferential motion is restricted or which is the

geometric condition and this is the natural boundary condition. Similarly, again at theta =0

and theta bar, so this R; so this 2 boundary conditions follow from these boundary term, so

this is the first boundary term.

And this is the second boundary term corresponding to displacements, so delta u and delta w.

There is a third boundary term, which is in terms of the slope, so once again at theta = 0 and

the theta bar, del u del theta, so this must be =0 or the angle must be =0. So you have these



boundary  conditions,  so  these  are  the  geometric  boundary  conditions,  whereas  these

boundary conditions are the natural boundary conditions. 

So now in case of complete ring for, so when there is a complete ring the; in that case you do

not have boundaries like this, so what you have is? you have this periodicity conditions, so

which means that u at theta + 2 phi must be u at theta at all time and similarly and all that

follows from these periodicity conditions, so everything is going to be a periodic. So this

displacement,  slope,  bending  moment,  shear  force  etc,  so  they  are  going  to  satisfy  the

periodicity conditions. 

So for a complete  ring, we have these 2 conditions.  So let  us recapitulate  what we have

discussed today. We have today discussed the; initiated some discussions on the dynamics of

the curved beams, we have considered in a particular beams of constant curvature and we

have  derived  the  equations  of  motion  using  both  Newtonian  as  well  as  the  variational

formulation.

And this  is  very interesting and peculiar  about this  curved beams that the transverse and

circumferential  motions  now  are  coupled  they;  in  the  straight  beams  we  have  only  the

transverse  motion,  we can  treat  the transverse and the axial  motion  separately. They are

decoupled, but this curvature in the case of curved beams couples the circumferential and the

transverse dynamics that is what we have seen through the equations of motion. So with that,

we conclude this lecture.


