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Today we are going to take up some special topics in Vibrations of beams so, the first topic that

we are going to discuss is that of a tensioned beam so what happens when uniform beam is

subject to tensile loading? So this is important because when we discuss strings taut strings are in

tension, but as we have discussed before that there are examples. For example, the guitar string

which looks like more like a beam under very low tension.

And as  you make it  taut,  it  become string,  so we are going to  look at  in  this  transition  of

behaviour  from a beam like behaviour  to  a string like behaviour  when you put  beam under

tensile loading so let us look out this example.
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Let us consider this Euler Bernoulli beam which is subjected to a tensile loading say T, then the

equation of motion so this  is  a Euler-Bernoulli  beam so these two terms are from the beam

equation now, when you have this tensile loading and then and then additionally you have so this

is the equation of motion foreign Euler Bernoulli beam in case of so this is for an Euler Bernoulli

beam.



In case of Rayleigh beam you have this additional term because of rotary inertia so this is for a

Rayleigh beam which has this additional term because of the rotary inertia. Now since this can

always fall  back to the Euler Bernoulli  beam if  you drop this  rotary inertia  term so we can

discuss the Rayleigh beam so let us first Non-dimensionalize the equation of motion. So if you

do this non dimensionalization using this scheme.

So the special co-ordinate is non-dimensionalized with the length whereas the field variable is

non-dimensionalized with this rg which is the radius of gyration which is defined as square root

of  the  second  moment  of  area  divided  by  the  area  of  cross  section.  Further,  we  non-

dimensionalize time using the speed of propagation of transverse waves so if you use this non-

dimensionalization scheme.

Then the non-dimensional equation of motion turns out to be in this form. Now here we make so

now you see that these two terms are from the - from the string equation of motion whereas these

two  terms  are  from  the  flexural  stiffness  and  the  rotary  inertia.  Now  if  you  look  at  these

coefficients so these coefficients this can be written if you divide the numerator and denominator

by rho A then I can recast this as where epsilon is always the axial strain in the beam.

So, T divided by EA so that is going to give us the strain because of this tensile loading and s r is

defined as the length over the radius of gyration this is known as the slenderness ratio, so this is

the slenderness ratio and this is the axial strain. Now so this coefficient is nothing but inverse of

the axial strain and inverse of the square of the slenderness ratio similarly, this coefficient is 1

over slenderness ratio square.
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Now using these definitions then we can rewrite the equation of motion so, this is our equation in

non-dimensional form and the parameters and the coefficients defined in a very special way so

here I have of course drop the tilde symbol for simplicity, now let us look at these terms so this is

the slenderness ratio which indicates how slender the beam is so it’s the length over the radius of

gyration.

So if the beam is very very slender then the slenderness ratio is very large because its length is

much larger than the area property so when the beam is very very slender then this is very large

and therefore these terms can be dropped in comparison to this term so in that case we expect the

string like behaviour so in other words you can treat a beam under tension very slender beam

under tension like a string.

On the other hand, if this strain is very small so the axial strain is very, very small so if the

tension is small and the axial strain is very small in that case this term might become significant

in that case you may have to include this flexural term in the equation of motion so this rotary

inertia term therefore is negligible. In that case of slender beams whereas this term is negligible

if the - if the beam is again slender in the tension is very high.

So the tension is very high and the beam is slender then these two terms can be dropped therefore

it will have a string like behaviour or the system can be modelled as a string where as if tension



is very small then this flexural term may be significant so this must be considered so we you tend

to more like a beam like model. So this is precisely what we observe from this equation and

elements like the guitar string which are extremely slender.

When they are put even though they have sufficient bending stiffness, but when they are subject

to a large tense - tension in that case the behaviour is like a string so you can treat guitar string

under tremendous amount of tension as the string so this is what we have observed. So another

way to look at it is that the restoring force in a - the restoring force in a guitar string is more

because of tension then because of its flexural rigidity so or flexural stiffness.
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Next  let  us  consider  a  beam -  beam with non-homogeneous  boundary  condition,  so in  -  in

various situations you find beams which are excited at the boundary so, for example when you

have an absorber attached to a vibrating structure an absorber made of a continuous system like a

beam which may be attached to a vibrating surface or structure for the purpose of vibration

absorption, so usually these beans are like cantilever beams.

So they are fixed on the structure and they vibrate because of base excitation, so let us consider

this  example of a cantilever beam, so this  is the cantilever  beam which is subjected to base

excitation, so we can consider that this motion of the base is given by h of t so this is the time



varying function which is specified let us say and we will consider that this is a Euler-Bernoulli

beam.

So the equation of motion is given by this and the boundary conditions, so the displacement of

this boundary suppose given by this function h of t at x equal to 0, we also have this condition

that the slope is 0, whereas for the free end we have the bending moment as 0 and the shear force

is 0, now if you have so this is one kind of non-homogeneous boundary condition you can have

other kinds.

For example, you can have a cantilever beam once again, but let's say with the time-varying

moment  at  the free end,  so in  this  case we can write  the equation of motion and boundary

conditions, so once again at this free end now they are both 0, the displacement and the slope

whereas the bending moment at condition at this free end maybe written like this and the shear

force at the free end is 0.

So this is another kind of non-homogeneous boundary condition, where you have the force here

it was the displacement here it was the force now when you have - when you have force it is

possible to include it in the equation of motion, so we are going to first discuss this - this kind of

system where we have excitation boundary excitation in terms of displacement when you have

forces again it is possible very easily to include this force in the equation of motion.

And then we can treat it as system with homogeneous boundary condition now why do we need

this  because  whenever  we  have  solved  the  Eigenvalue  problem  we  have  considered

homogeneous boundary conditions usually, so if you want to use this modal expansion theorem

for  solving  the  system  in  such  cases  you  will  require  that  the  boundary  conditions  be

homogenized first.

Otherwise, the modal expansions the Eigenfunctions do not satisfy will not satisfy the boundary

conditions with time-varying functions, so we would like to have a method of homogenizing the

boundary  conditions  for  the  problem,  so  let  us  look  at  this  problem  first  so  we  have  this

cantilever beam with base excitation.
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Now let us try to make transformation of variables so, let us say that our field variable w we

want to convert or transform to another field variable let’s say u x, t + an unknown function of x

times h of t so, which is this function that we have as the forcing, now this structure is of course

motivated by the structure of the boundary conditions, now if you consider this - this new so this

is a new field variable and this function is at as yet unknown so this is an unknown function.

Now let  us use this  transform - this  transformation in the equation in the - in the boundary

conditions, so the displacement boundary condition so this must be h of t the slope condition so

the prime here denotes derivative with respect to x that must be 0, now the bending moment

condition is 0 and similarly, the shear force condition at x equal to l is also 0, now we would like

to have so this is our new field variable.

So the equation of motion, so if you substitute this in the equation of motion that is equal to, so

minus of rho A eta h double dot that comes from the inertia term and similarly, this comes from

the flexural stiffness term, now we would like to have homogeneous boundary conditions for this

equation of motion now the field variable is you and the right hand side is now we have in terms

of the time varying function h and as yet unknown function eta.



So if you want to have homogeneous boundary conditions for u which means that this must be 0,

so these are all 0, so this implies eta of 0 is 1, now we have to construct a function eta which

satisfies these four conditions now to keep things simple we can consider a polynomial, in this

form and if you now use these conditions so this will imply a 0 is 1, eta prime 0 is 0, so this will

imply a 1 is 0, eta double prime l if that is to vanish then twice a 2 + 6 a3 l must vanish.

And, if the triple derivative of eta is to vanish then a 3 must be 0, so in that case a 2 is also 0, so

therefore eta  is  nothing but 1,  so this  is  a very simple example,  so in that  case finally, and

therefore the equation of motion so what we obtain from here so this is the equation of motion

and this is accompanied with accompanied by boundary conditions which are all homogeneous

so these are the boundary conditions.

So we have now a system which is forced, but as homogeneous boundary conditions, if you

perform therefore the modal  analysis  of the unforced system which is  nothing but  normal  a

cantilever  beam then you can use the Eigenfunctions  of the unforced to system to solve the

forced vibration problem, so we can easily convert any in non-homogeneous problem with non-

homogeneous boundary conditions to problems with homogeneous boundary conditions.

Next let us look at this important phenomenon of Damping so as we have discussed before as

well we can have two kinds of damping in continuous systems one is the external damping which

is more common or very easy to see and then there is an internal damping which is very actually

hard  to  model  and  also  very  less  understood  this  is  because  it  depends  on  the  material

constitution the internal structure of the material.

Now  these  internal  damping  we  are  all  considering  throughout  one  dimensional  elastic

continuum so beam is  also one dimensional  elastic  continuum so the source of  this  internal

damping is usually friction between the layers of the molecular layers inside the structure or

inside the material so when we are saying we are considering one dimensional continuum then

there is no question of having layers. 



So we must introduce this internal damping in phenomenal logical way, so to do that we follow

the Kelvin voigt model so let us look at this model for internal damping.
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So first we are going to look at internal  damping, so to model internal damping we use the

Kelvin voigt model so this in order to implement this model we modify the constitutive relation

of the material so we know we have used that for our beam model the Hooke's law given by the

stress equals the Young's modulus times the axial strain, so this was the axial stress in the fibers

of the beam.

Now in addition to this the stress because of the mechanical straining we add the second term

which is dependent on the strain rate, so the stress not only depends on the amount of straining in

the fibers but also the rate at which the fibers are being strained, here this eta is known as the

Loss factor, it is written in a special way in order to match this term, so e times sum eta times

epsilon dot.

So if  you use this  model  to derive the equation  of  motion  then  you can easily  see that  the

equation of motion, so these are the two terms that we already have in the Euler Bernoulli beam

now because of this additional term you can expect that there is going to be, so this - this is the

new term because of internal damping.



Now to see that  this  is  really  a damping term so we multiply  this  whole equation  with the

velocity del w del t and integrate over the domain of the beam that's the length of the beam so we

obtain and integrate this and that must also be 0, now we integrate by parts this term two times so

and similarly, this term also integrates by parts two times and the rest of the terms in the integral

I can write this term as.

Similarly, after integrating by parts this term two times so this is what we are going to get, now if

you use the boundary conditions  say for example  in  a simply supported beam then at  l  the

velocity must be 0 at and the bending moment must be 0, so this term will vanish similarly, this

time will also vanish, so using the boundary condition you can show that these boundary terms

will actually vanish.

So therefore we are left with this integral equal to 0, now you can easily identify that these terms

these two terms are nothing but the total energy the rate of change of total energy half rho A del

w del t whole square is the kinetic energy, this is the potential energy so this is the total energy

and this term I am going to take on the other side.

Now if there is an eta as well so now E is positive, I is positive, if eta is also positive and this a

squared quantity so this is the positive quantity so integrated over the length of the beam so this

must be positive quantity if eta is positive and therefore the energy the rate of change of energy

is negative which means that energy always reduces so if this loss factor is positive then this term

is going to drain the mechanical energy.
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Now let  us look at  a Simply supported Euler  Bernoulli  beam with internal  damping,  so the

moments are 0, now we have seen that for an undamped beam the modal vibration is given by,

let us for a moment assume that this beam is vibrating in this nth mode so if I substitute this in

the damped equation then I  can rewrite  if  you substitute  this  in  the equation of motion and

simplify.

If you simplify then, so this can be in general function of time you can  recast the equation of

motion in this form where so this is what is interesting to observe so if you consider that the

beam is vibrating in the n th mode than the equation of motion for that mode the - the modal co-

ordinate  the  modal  dynamics  is  governed by this  equation  where  the  natural  frequencies  as

suspected but there is a damping factor which we find is proportional to n square so higher the

mode higher will be the damping factor.

So which means that the higher modes get effectively damped because of internal damping. You

can repeat this analysis with external damping and you can easily show and this we have seen

before as well, in the case of strings and bars, that with external damping the lower modes are

more effectively damped then the higher modes. Same conclusion can be drawn even for this

beam vibration where we find that internal damping is effectively damping the higher modes.



And the external damping will effectively damped the lower modes. So to conclude today, what

we have discussed we have considered two topics from beam vibrations three topics. So first we

have  considered  the  non-homogeneous  we  have  considered  non-homogeneous  boundary

conditions, we have considered internal damping in beams and at in the beginning.

We also looked at  the beam under  tension,  so how the  string  and the beam behaviour  gets

delineated. So that was another topic that we looked at, so with that we conclude this lecture.


