
Vibrations of Structures
Prof. Anirvan DasGupta

Department of Mechanical Engineering
Indian Institute of Technology – Kharagpur

Lecture – 21
Approximate Methods

In the previous lectures, we have been discussing about the model analysis of beams and

what we observe that even for simple configurations of beams or simple beam models, you

can  have  fairly  complicated  eigenvalue  problem,  which  we  have  to  solve  in  order  to

accomplish model analysis. So, one would be interested in knowing if they are approximate

methods which can quickly tell us, give an estimate of the eigenvalue frequencies.

And the modes of vibration of a continuous system and for example for beams. Now in our

previous  lectures,  we  have  discussed  some  of  these  methods  which  are  used  for

approximately performing the model analysis and as we have discussed that these methods

can be improved to, improved the accuracy of analysis. So today we are going to look at

some of these approximate methods applied to beams. 
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So  the  first  example  that,  so  let  me  first  enumerate  the  various  methods  that  we  have

discussed that we will use also in the case of beam. So for example, we have use the Ritz

method, so these are all, so the Ritz method we have also looked at; now in the Ritz method,

what we need? We need admissible functions, so we expand the solution in terms of this

admissible functions. 



On the other hand, for the, in the Galerkin method, we use comparison functions. So suppose

we have a field variable, u that we expand in terms of these spatial functions which in the

case of Ritz method, these are admissible functions, on the other hand in the case of Galerkin

method, these are comparisons functions and then in the Ritz method, we use the variation

formulation.

So we substitute or replace our field variable in directly in the vibrational formulation of the

problem with this expansion. When the Galerkin method, we do, we work with the equation

of motion.  So these have its  own advantages  and disadvantages,  for example  in the Ritz

method, it is sometime tricky to consider non potential or non-conservative forces, while it is

much easier with the Galerkin method.

On the other hand, for Galerkin method, this comparison functions they have to satisfy all the

boundary  conditions  of  the  problem,  which  are  more  difficult  to  construct,  while  this

admissible  functions  must  satisfy  only  the  geometric  boundary  conditions.  So  this  is  an

advantage of admissible functions and these can be very easily constructed using polynomials

or trigonometric functions or other such elementary functions. 
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Now, so today we are going to  look at  these application  of  the Ritz  method for  certain

problems in beams. So the first problem, is that of vibrations of a Cantilever beam, so let us

consider this Cantilever beam, now the boundary conditions for this beam, we have discussed

this before, we have the displacement at this point to be 0 and the slope also is 0 for all time.



On the other hand, on this free hand of the Cantilever beam, we have the bending moment to

be 0.

And we also have the shear force at this free end to be 0. Now so the, since we are applying

Ritz method and in the Ritz method, we must we use admissible function which must satisfy

the geometric  boundary conditions,  now these are the geometric  boundary conditions.  So

whatever  admissible  functions  we  choose,  they  must  satisfy  these  conditions.  So  let  us

consider admissible functions.

So if I consider a function like this, so remember that we are going to use this, we are going

to use an expansion like this, so we must choose our admissible functions, which must satisfy

the geometric boundary conditions of the problem. So if we consider this to be, let say linear

in x, then at x=0, this is satisfied, so psi 1, 0 must be 0, but when we look at this boundary

condition, which is a slope condition, so del del x of psi 1 at x=0, must also be 0.

But if we choose the function like this, then this boundary condition will not be satisfied. So

from these  considerations,  one  can  easily  come  to  the  conclusion  that  this  must  be  the

function, one of the functions that can be used as an admissible function. Then we can use the

higher powers of etc, so let us first begin with only a 2 term expansion, so which means, so

first use, we will first use this 2 term expansion.

So  a1  and  a2  are  the  2  temporal  coordinates.  Next  we  introduce  this  expansion  in  the

Lagrangian, which  reads,  so  this  is  the  Lagrangian of  Euler-Bernoulli  beam.  So  let  us

consider an Euler-Bernoulli beam the  Lagrangian is given like this, now we substitute this

expansion in  here  and what  we obtained if  you and if  you simplify  this  further, so you

substitute these expression of psi 1 and psi 2 and perform the space integration.

That means integration over x, these are polynomials, they can be integrated out easily the

final  result.  So  this  is  the  Lagrangian that  you  have,  now  this  is  the  Lagrangian of  a

discretised system with coordinates a1 and a2. Now we can write down Hamilton's principle

for this. So this will give us the equations or equations of motion and you know that this is

going to lead to the Euler–Lagrange equations which, so these are the equations for the 2

coordinates a1 and a2.
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And when you derive these 2 equation, they are of the form, so these are; I mean this is the

discretised equation for the Cantilever beam. Now we perform the standard model analysis

for this discretised system and we can calculate the Eigen frequencies,  the circular Eigen

frequencies and the modes of this Eigen vectors, which can be used to determine the modes

of vibrations. 

So let us first look at the Eigen frequencies, so when you do this calculation, so this is the

first  circular  Eigen  frequency  of  the  Cantilever  beam,  calculated  from  this  discretised

equation and the second one is obtained like this. Now if you do the exact calculation, so

which we have discussed before, so this is the exact this turns out to be; now you can make a

comparison.

So while these fundamental circular Eigen frequency compares very well with the exact, the

second circular Eigen frequency this is on the higher side, so as we have discussed before,

this Ritz method gives us an upper bound on the Eigen frequency. So the what; when we

calculate by this approximate method we are going to get this omega 2 and what this tells us

is the actual Eigen frequency is less than this value. 

Similarly, her also you can see the actual Eigen frequency is less than this value, so this is an

upper bound property of this Eigen frequencies calculated from the Ritz method. Now let us

look at the Eigen functions, so when we substitute here, we are going calculate omega and A,

so the Eigen pairs. So we are going to get this Eigen vectors and using this Eigen vectors, we

actually construct our Eigen functions using the expansion that we have used. 



So we do a dot product, so the first Eigen vector that we get with corresponding to mega 1,

which is A1, so if you dot product with the vector of the admissible functions, so you get the

first Eigen function and this turns out to be; so this A1 vector r is actually, so this was the A1

vector, we take the dot product with the psi vector. Similarly, the A2 vector was actually this,

so this is our Eigen function. 

Second Eigen function. Now as we discussed that these admissible functions do not satisfy, I

mean they are not required to satisfy the natural boundary conditions which in our case of this

Cantilever beam, these are the movements and the shear force and the bending moment being

0 at x=l. So let us look at, so what we have is; this must be 0, but since, so this was the

bending moment condition, this was the shear force condition. 

Now let us see how well these Eigen functions satisfy these conditions. So if you calculate,

for example, w1 double prime at l, that turns out and divide this by w1 at l, that turns out to

be and similarly so we are trying out with the first Eigen function, we take double derivative

of that and see how close to 0, this is. Now as you can see with increasing length of the beam,

this is going to go to 0, quiet fast and similarly for the shear force. 
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Similarly, you can do for w2, the second Eigen function, but since our; we are more confident

about our first Eigen functions so here I have taken this example of the first Eigen function.

Now but I mean this may or may not be satisfactory for the purpose, so what we can try out is



we can increase the number of terms in our expansion. So in the second example, I have

considered with 4 terms in the expansion.

And I have taken the admissible functions in this form, so psi 1 is the square of x over l, so I

have gone up to 4 terms in this expansion and when I calculate the; following the procedure

that we just discussed, if you calculate this Eigen frequencies, so this turns out to be and

remember the exact was, so this one, so now you can see that with 4 term expansion, we have

comparative close to the exact solution.

And now once again if you calculate the first Eigen function this turns out to be, similarly

you can calculate the second Eigen function and third and fourth and now we are focussing

on the first again let me calculate this ratio, which will tell us, how far the natural boundary

conditions are satisfied at the free end, so these are at l. So now you can see with increase in

the number of terms in the expansion.

Even the natural boundary conditions at the free end, which are the binding moment and the

shear force, they are also going to 0 quiet rapidly. So as you increase the number of terms in

the expansion, you are going to get accurate solutions of the Eigen frequencies as well as the

Eigen functions will also get more and more accurate and they are going to automatically

satisfy, they will tend to satisfy the natural boundary conditions which you have neglected

while doing this expansion. 
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Now let us look at these Eigen functions, which I have plotted here, so this is the first Eigen

function, the solid line is the exact and this chain dotted line is with, with 2 term expansion

and with 4 term expansion you have this dashed line so you can see that the Eigen functions

they also tend to go close to the exact Eigen functions, which we have discussed in one of our

previous lectures. 
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Now let us go over to a second example, this example is of a plain frame, so let us look at this

plain frame. So we have this plain frame constructed out of 2 beams, which are welded at this

point, so for simplicity, we consider that the lengths of both these beams is the same, so we

have l and l. Now here we have built in end of this frame and here it is a pin, pin end. Now

these are essentially 2 beams, which have a junction.

So we must; we can treat them like that, so let us consider that the coordinate here is x and

the displacement in this direction for this beam horizontal beam is represented by w1and this

coordinate  is  y  and  the  field  variable  for  this  vertical  beam  is  w2.  Now  we  intend  to

determine the Eigen frequencies and modes of vibration of this frame. Let us first write down

the boundary conditions.

So at this built in end, so these are the boundary conditions at the built in end add the pin

support, we have displacement as 0 and the bending moment and the coordinate is y, so this is

0. Now along with these boundary conditions, we also have this junction. So what are the

conditions at this junction? So the first condition if we say, consider this beam the horizontal

beam then there cannot be any vertical displacement of this beam at this point.



Assuming that there is no axial or this beam is axially rigid, so there is no axial displacement

at this point. In that case, this point of the horizontal beam cannot have any displacement.

Similarly by similar reasoning, for this vertical beam cannot have any displacement in the

horizontal  direction.  Now since this  point  is  welded,  so these 2 beams are welded at  90

degree.

So under deflection as well as this angle has to be maintained, which means, so this is the

slope condition. These 2 slopes they must maintain a certain relation. The second condition is

on the bending moment, so this is course y, so there must be an equilibrium, so from those

considerations, we can obtain this bending moment condition at this junction. So now we

have all the conditions required for this plain frame. 

Now let us identify the geometric boundary condition, so here, so these are the geometric

boundary conditions for the problem. So we must satisfy, so when we are following the Ritz

method, we have to satisfy these geometric boundary conditions and the others, the natural

boundary conditions are not so much essential. So let us now consider this expansion. I will

write out this expansion, which has been constructed using polynomials, etc.

(Refer Slide Time: 41:56)

So there can be various ways of constructing this expansion, these individual polynomials

which satisfy the geometric boundary conditions, so these are etc. So I have considered these

expansions, but I mean, they can be these admissible functions but these functions can be



construct in various other ways. Now using this expansion, these 2 expansions of the field

variables, we write out the Lagrangian.

So we have written out the  Lagrangian for this individual beams and when we substitute

these expansions in this Lagrangian and integrate out the space part, so here we integrate over

x, here we integrate over y and we obtained the discretised Lagrangian from where finally as

we saw in the previous example, we are going to get the discretised equation in this form.

Now these are the matrices; the mass matrices and the stiffness matrices; stiffness matrix.
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And we again perform the model analysis for this discretised system and if you do that then

the result  for the first  2 modes,  so these are the first  2 circular  Eigen frequencies of the

system which has been calculated using this  Lagrangian and expansion that I discussed just

now. So this figure shows the first 2 modes of vibration of this plain frame, so you can see

that, so this is the fundamental frequency and the corresponding Eigen mode of vibration.
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So you can see that this angle of 90 degrees being maintained in both these cases, since we

have  chosen  our  admissible  function  which  satisfy  these  geometric  boundary  conditions

already, so this was an example of a plain frame. Next we look at this Timoshenko beam,

which is little more sophisticated model for beam, which considers also the shear deformation

of the beam. So we will consider a simply supported Timoshenko beam. 

Now if you recall the Lagrangian of the Timoshenko beam is given by this expression. Now

in order to simplify this, we use the definition of the shear modulus and we also define what

is known as the slenderness ratio. In that case, the Lagrangian gets simplified. So with these

definition, and we can take out the material constants out and simplify, so this actually is a L

tilde.
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Now we can, let us look at the boundary conditions of a simply supported team Timoshenko

beam, so the boundary conditions are obtained through variations, you can write them as, so

these are the geometric, which we need to satisfy when we are performing the Ritz analysis.

So in order to satisfy these boundary conditions, we can choose, we can expand these field

variables. 

For example, psi can be expanded as, etc and w, can be similarly expanded, etc. So you can

see  that  these  boundary  conditions  actually  can  be  satisfied,  so  psi  for  example,  can  be

satisfied by using an expansion like this, whereas so if the length is l, then one can use the

expansion like this. So using these admissible functions, we have expanded the field variables

and  finally  after  applying  the  variations  etc,  we  will  obtain  the  discretized  equations  of

motion.
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Now if  you perform the  model  analysis  of  this  discretised  equations,  then  the  first  non

dimensionalised circular  Eigen frequency is  obtained as 0.612, second one is obtained as

2.087 and so on. The fifth is obtained as 9.889, the sixth is obtained as, now there is a reason

why I am writing 1,2 and then 5, 6, there are of course other circular Eigen frequencies in this

range but let us look at the Eigen functions, which are shown here. 
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So this is the first Eigen function and you can see the first circular Eigen frequency, so you

can see the mode of vibration in the first mode for the Timoshenko beam and similarly this is

the second circular Eigen frequency and the second mode of vibration. So these 2 look very

similar to a normal beam. Now let us look at this fifth and the sixth, now here there is hardly

any transfers displacement, it is very small, not visible in this figure.

These  are  actually  the  shear  modes  of  the  Timoshenko  beam and  these  frequencies  are

substantially higher. So what we have looked at in this lecture today, we have discussed about

the approximate methods for model analysis for discretisation (()) (55:14) we can discretise

the equation of motion of the beam and we have use the Ritz method for discretisation.

One can also use the Galerkin method in a similar manner, the only thing is in the Galerkin

method,  since  we  use  comparison  function,  so  they  are  little  more  cumbersome  for

calculations as to construct. On the other hand, the Ritz method, we have seen the admissible

functions are very easy to compute and if you increase the number of turns in a expansion,

then you can also satisfy the;

Or  you  can  also  make  this  natural  boundary  conditions,  which  are  neglected  while

constructing the admissible functions, so you can make this natural boundary condition also

to be 0, so the satisfaction of the natural boundary condition, so with increase in number of

terms, you can satisfy these natural boundary conditions better. So with that we conclude this

lecture. 


