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Damping in Structures - I

When you consider a structure, a real life structure and if you give it a certain disturbance or

some initial conditions so what you observe is the structure response to this disturbance to this

initial condition and slowly after sometime the structure stops vibrating. Now in our discussions

on initial  conditions  in this  course and in  the animations  that  I  have shown once given the

disturbance or the initial condition you have seen that the structure is continuously vibrating.

But  that  is  not  observed in  nature.  So  we conclude  that  there  is  a  mechanism inside  these

structures  or  because  of  the  interaction  of  the  structure  with  external  world.  There  is  a

mechanism which drains out the energy of the structure. So this mechanism of dissipation of

mechanical  energy  is  known  as  damping  and  in  this  lecture  we  are  going  to  look  at  this

mechanism and we are going model put these damping terms in our model so that our model

looks more realistic.
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Now there are various kinds of damping. So first what I have said this damping is a mechanism

of energy dissipation. Now what’s happens to this energy that is dissipated? It gets converted to



thermal energy and this is an irreversible process. This conversion of this mechanical energy to

thermal energy in these cases is an irreversible process. Now most of the damping mechanism

they work on this but there is an exception which is known as radiation damping.

So here this is an exception. This damping mechanism this draining of energy of the structure by

radiation damping takes place not by conversion to thermal energy but by radiation of the energy

in form of sound in the fluid medium in which the structure is placed. For example, air or in

water  or  in  any other  liquid  or  sometimes  even from the  support  points  of  the structure  so

wherever the structure is supported from no support is ideal that means no support is rigid.

So there will be some flexibility and continuously energy gets radiated out at the support points.

So we have primarily this energy dissipation by conversion to thermal energy but there is another

mechanism in which it might also be converted or radiated out of the structure. Now what are the

sources  of  damping?  So the  first  is  known as  the  internal  damping  or  internal  friction.  So

whenever structure is vibrating between the layers of the structure molecular layers.

There is differential because of differential straining this layers they have differential motion that

dissipates energy. Now one thing to note is we are considering one dimensional structures now

there is no question of any layer in a one dimensional structure but then we are going to have a

phenomenological model based on the rates of stretching for example of the structure the rate of

strain so strain rate so model internal friction or internal dissipation.

The second source of dissipation is external damping so the structure might be interacting with

an external fluid so that provides damping. The third is of course the radiation of energy so this is

radiation damping. Now we can have distributed damping or concentrated or lumped damping.

Now  these  internal  dissipation  and  external  damping  because  of  fluid  they  are  distributed

damping while concentrated or lumped damping occurs in this can occur in external damping.

When we attach a lumped dash part or damper at a particular point on a structure so this is

typically occurs when we have that is a Stockbridge damper in high tension cables. So that is the

concentrated or lumped damping. This is an external damping and it can happen at connections



and joins. So we can have concentrated or lumped damping at connections and joins say for

example riveted connections etc.
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So we have these two kinds of damping. let us being with distributed damping. So let us try to

model this internal distributed damping first. Here we are going to discuss the phenomenological

model for internal damping so for example in a bar in actual vibration. Now when we derive the

equation of motion of such a bar we consider this constitutive relation so like this. Now as I

mention that in order to model internal damping for one dimensional system.

We must somehow consider the rate at which this straining is taking place. So we modify our

constitutive relation to include the strain rate. Now this term this factor is known as the loss

factor. And the product of these two terms may be represented as dI the coefficient of internal

damping. So what we have done is we have introduced in our constitutive relation this additional

term which we will see how this works as internal damping.

So therefore our stress is given by this. Now when we use this to derive the equation of motion

as we have done before we consider uniform cross sectional area so this term you see is E times

del u del x this term therefore this term will give us and along with the boundary conditions so

this is the damping term. So we have introduced we have obtained this term by introducing this

additional strain rate in our constitutive relation.



Similarly, with external distributed damping we have the term like this and together with internal

and external damping we have this equation of damp vibration of a uniform bar.
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Now this can be this equation may be written in the compact form like this where this damping

operator  this is  known as the damping operator. Just  like this  “K” is known as the stiffness

operator.  So  let  us  first  see  that  these  terms  that  we  have  considered  they  indeed  lead  to

dissipation of energy because as yet we have just introduced theses terms we have not checked

whether they really lead to dissipation of energy so let us start with this equation of motion.

And as this is a usual way to obtain energy equation we multiple this whole equation where the

velocity and integrate over the domain of the bar. So which means what we do is and this must

be zero so multiply by velocity and integrate over the domain of the bar. Now these two terms I

will integrate by parts with respect to the space so what I obtain and this term I can write as can

be easily checked.

So this first term can be written like this and this term there will be space derivative of this term

and similarly now if we use the boundary conditions that we have then these boundary terms

they drop out because at x equal to zero the velocity is zero. At x equal to l this is the first



precondition so this is zero. Similarly, this is also zero. So what we are left with is this integral

here again I can write this term so I can write this also as time derivative.

The time derivative I have taken it out and I will take the other terms on the right hand side so

you see on the right hand side we have an integral which is always positive provided dE is

positive so if this dE is positive and eta is positive then this integral is positive. Here there is a

negative sign so the right hand side is always negative. So which means this is always less than

zero provided dE is greater than zero and eta is also greater than zero.

Now this is nothing but the total mechanical energy of the bar. So this is the kinetic energy and

this is potential energy. We have already seen these terms. So the rate of change of energy is

always  negative  which  means  energy always  dissipates  or  drains  out  of  the  system.  So the

mechanical energy is always dissipated by these damping terms that we have considered. So this

shows how this the energy dissipates with time.
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Suppose you have forcing so in that case this energy equation so I will write dE/dT and suppose

in addition you have forcing. So this additional term would come because of external forcing.

Suppose this forcing is something like this harmonic force that we have considered. So we know

already we have discussed this that there is a steady state solution and because of this damping

now as we have seen here all the energy of initial disturbances.



Suppose you have an  initial  disturbance  then that  energy must  dissipate  or  drain out  of  the

system  so  what  we  are  left  with  is  the  steady  state  solution.  So  any  initial  condition  any

disturbance created because of an initial condition must dissipate out as we know from here. So

if we have the harmonic forcing for example what will remain at sufficiently large times is the

particular solution which is generated only because of this external forcing.

So from here you can estimate what happens at steady state so at steady state the motion is

periodic therefore if I integrate this energy equation over one period the change of energy must

be zero. So therefore I can write here I am assuming that this forcing is periodic or harmonic. If

there is a steady state solution, then at steady state the energy change over one period must be

zero therefore this is what we obtain.

So what this says is the energy provided by the forcing over one cycle is equal to the energy

dissipated by the damping terms over one cycle so from here you can estimate many things for

example you can estimate the damping. Suppose you give harmonic input and you record the

amount of energy that you are supplying over one period then you will know how much energy

is being dissipated.

So  you  calculate  this  term and  will  give  an  estimate  of  energy  dissipated  by  the  damping

mechanism in the system. So what we have concluded that any initial condition or any initial

disturbance must die out because of this damping terms and what remains is the steady state

solution and that can be used to estimate the energy that is dissipated and that can be used to

model the internal dissipation as well as you can estimate the amplitude of motion in certain

cases.
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Now let us once again look at this damp system with certain boundary conditions. So this along

with certain boundary conditions let us solve, try to find a solution or let us discretize this system

as we have done before using the model expansion. So these are the Eigen functions of the

undamped Eigen values problems. So when you substitute here then finally take inner product

with the j of the Eigen function.

What we obtain these steps we have done many times before so I have directly written the co-

efficient of the jth term in the solution so I can carry this out for all j and get all the equation

governing the model coordinates.  Here this djk this  matrix is given by this  integral.  Now in

general there is no guarantee that djk is diagonal. If this is not diagonal, then all the modes are

coupled so all the modes are coupled through this damping term.

There is a special situation this damping matrix this will be a completely diagonal matrix. Let us

look at that condition so that condition follows very easily from here if D uk is some d k times,

mu x times mu k so for all Eigen functions if the operator operating on this Eigen function gives

this. In other words, uk is also an Eigen function of the operator D the damping operator. Then

the damping matrix is completely diagonal as you can see from here.

So one choice of this damping operator for which this happens is when the damping operator is a

linear combination of the inertia operator and the stiffness operator. Such damping operator is



called the classical or proportional damping operator. We say that the system is classically or

proportionally  damped  when  the  damping  is  linear  combination  of  the  inertia  and  stiffness

operators. So in that case our equation completes decoupled.

So we have completely decoupled system of differential equations when the damping operator is

classical or proportional.


