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So, we have been looking at Forced Vibration Analysis of one dimensional structures in the past

few lectures. Today, we are going to look at, we are going to continue our discussions on forced

vibration.  In  the  previous  lectures,  we  have  seen  harmonic  forcing,  systems  with  harmonic

forcing which we have separated in space and time, there is a distribution function for the force

and then there is a multiplying harmonic function of time.

Today we are going to look at general forcing which means forcing which need not necessarily

be separable in space and time. So we are going to look at general forcing in today lecture.
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Now, let us consider some examples of this general forcing, in one of the previous lectures you

have already seen that an initial value problem of with certain boundary conditions and initial

conditions, so the initial value problem can be equivalently stated as. So, these two statements

are equivalent so essentially, we have converted an initial value problem to a forced vibration

problem,  here  is  the  Dirac  delta  function  and  this  is  the  time  derivative  of  the  Dirac  delta

function T=0.



So this problem is a forced vibration problem equivalent to this initial value problem, so in this

case as you can see this kind of forcing is special in a very special form and this is not harmonic

forcing. So, forcing of this type or when a force is travelling on a string for example on a bridge

you have a car travelling at a certain speed so you have a travelling load problem or a travelling

mass problem. 

So, such forces load the structure and they are not harmonic forcing in fact in such problems

space and time are coupled they are not separable.as we will presently see in this lecture, so

problems of this type can be considered of general forcing. These are problems with general

forcing.
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So, let us look at how do we solve a general forcing problem, we consider an example, let me

state the problem, so we have the equation of the differential equation of motion with of course

certain  boundary  conditions,  so  this  q  x,  t  is  a  general  form of  a  force  which  we are  now

considering, to solve to prove such problems we have various methods, what we are going to

consider here today are the modal expansion method, we are going to concentrate on this modal

expansion method.



And towards the end we are also going to look at the Green’s function method, so essentially

today we are going to look at these two methods.
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So, let us start with this modal expansion method. We have discussed in an initial in previous

lecture, how and why the modal expansion technique works, the modal space and the eigen value

problem of the systems form a complete basis which means any shape or any configuration of

the  system  can  be  represented  by  these  eigen  functions,  so  this  is  the  basis  of  this  modal

expansion technique, so we are going to look at this problem with certain boundary conditions.

And as we have discussed the solution we will represent in this form, so these are the eigen

functions  of  the  corresponding  eigen  value  problem,  now when  we  this  in  the  equation  of

motion, so we have to represent so we need not worry about the boundary conditions, so here we

now have to determine the coeffience, so that this expansion satisfies the equation of motion. So,

we have substituted this expansion in equation of motion. 

And  now here  this  K  linear  differential  operator  and  therefore  what  we  can  do  is  we  can

commute this summation and the operator and we can rewrite this equation in this form, now

recall that the eigen value problem for the system, so this was the statement of the eigen value

problem, so here differential equation of the eigen value problem, from here we can see this

expression of the stiffness operator operating on the eigen function.



So, we can replace it from here and then what we obtain, we obtain this.
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Now if I use the orthogonality conditions, so I take the inner product, so what I do is, I multiply

both sides of this equation with wj and integrate over the domain of the problem, so then we

know that from the orthogonality of these eigen functions we already know that so if j is not

equal to k then this is 0 then what this is going to do is filter out the j th coefficient expansion, so

we are going to get the j th equation.

And therefore, I can write this in this form, where this force term fj is given by and so and this I

can take for a different wj generate all these equations corresponding to the coordinates of the j

th of the individual modes, so I have these equations governing the coordinates of the system in

the configuration space or the modal space and that is a forced dynamics problem where the

forcing of the j th mode is expressed in this form.

Once  we  have  applied  the  external  force  where  we can  easily  compute  by  performing  this

integration,  now this  is  a  second  ordinary  differential  equation,  so  we will  need  two initial

conditions for this problem.to solve the problem completely.
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So, what we need are the initial conditions, now we are given these initial conditions on the field

variable, so we once again have this expansion and similarly from the velocity initial conditions

we get this equation.so we have to solve this equation. With initial conditions on p at 0 and p dot

at 0 which we are now going to solve from these two equations. So once again if we use the

inner product, now here remember that this is the orthogonality condition. 

Therefore, what we must do to solve these coefficience in a straight forward manner, so what we

do is, we multiply both sides with mu and wj and integrate over the problem, once we do that is

going to filter out the j th term in this expansion. And therefore, so that is how we can solve pjo

and  we  can  taken  we  can  obtain  all  these  infinitely  many  initial  conditions  on  the  model

coordinate, similarly we can also find out the initial velocity condition.

So, once we have all these initial conditions p and p dot then we can solve this problem
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Once we have this initial condition, then we can very easily solve, we already know the solution

of  this  kind  of  forced  dynamics,  what  we  have  achieved  in  this  process  is  the  discretized

equations of motion, so we have discretized the forced vibration problem.
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Now let us look at some examples, so the first example that we are going to consider is that of a

force  travelling  on  a  string,  so  let  us  look  at  this  problem,  so  we have  a  tot  string  with  a

considerate  force  travelling  at  a  speed  v, so  this  f  is  a  constant,  so  let  me write  down the

mathematical formulation of this problem, so we have the string equation of motion with this

forcing and of course the boundary conditions.



So, these are the boundary conditions and there can be certain initial conditions, now here we

will be looking at the forced problem, using this expansion in terms of the eigen function of the

tot string, now if you substitute this in here and follow the procedure that we just now discussed

then for the jth mode discretized equation of motion appears to be in this form, where this omega

j so this is our equation of motion.
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Now the solution of this equation can be easily written as, so this is the solution of this equation

provided v is not equal to c, where c, is the speed of transverse waves in the string, so c is the

speed of transverse waves in the string as long as the velocity or the speed of travel of this force

is different from c, is less than c for example this is going to be the solution, so you see when v

equals c, and if you look at this omega j.

Then you will find you will realize when v equals c this becomes a resonant forcing of the string

in the j th mode and therefore in all modes all modes will be resonant if v equals to c, resonant

forcing of c, as you know already in a different form, so this solution is valid as long as v is not

equal to c, you can also find out the resonant solution, using the standard techniques that you

have studied in discrete vibration problem.

In a course on discrete vibration, now so this is a solution form therefore here these are unknown

coefficient which form the homogenous solution for the system which are to be found out from



the initial conditions, so we will consider a stationery string before the force starts travelling on

the  string,  so initial  displacement  is  zero,  initial  velocity  is  zero and if  you solve  for  these

coefficients.

Then you will  see that the coefficient turns out to be and therefore the final solution of our

problem. So, this is our final solution and this solution is valid of course when v is not equal to c

not only that but also the time interval for which the force is on the string as soon as the force

crosses the string this solution is no longer valid, you have to solve for the string with certain

initial conditions which are the final conditions at t equals to l over v of this.

So you will get the final displacement of the string and the final velocity at t equal to l over v

from this expression that goes in as the initial conditions of the string in free vibrations. So that

would be an initial value problem, so after this you have to solve an initial value problem to

understand how the  string behaves  after  the forces  left  the string,  so that  is  an initial  value

problem which you have to solve using the final conditions from this solution.

And  we  have  already  seen  how  initial  value  problems  are  solved,  let  us  look  at  certain

configurations of the string.
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Let us consider, you will see the configuration of the string at certain time instance, for example

here this is point 2l over v so this force has travelled one fifth, the total length of the string and

this is how the string looks, like you see that this portion of the string is as yet undisturbed but

when t  reaches  point  four  l  over  v, forty percent  of  the  distance  has  been covered,  so this

information that a force is travelling on the string has reached the end here at point 6 l over v.

We can see cling forming here actually the information is now reflecting back and forth on the

string, now to this shows that point l point 8 l over v. Now these are snap shots.
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Here I have simulation or animation of the same thing, so I have taken number of terms in our

expansion,  I  just  now discussed and I  have plotted  the shape of our string in different  time

instance and prepared this animation. Now here you can see that the string appears to move in a

very strange manner, it looks very strange that it looks static, certain portions of the string looks

static for certain time instance.

So, what is happening is this disturbance which has created by this travelling force travels on the

string as a wave and it  reflects  back and forth on the string from the boundaries, unless the

disturbance reaches a portion of the string, the string does not know that the force is travelling,

so it remains, it looks like static, remember two things in this animation, one thing is that this is a

slow motion of the actual thing that is happening.



So, I mean it is very difficult to observe this kind of motion by naked eye, you have to record it

and run it in slow motion, the second thing is this animation does not take care of the motional

string after the forces left, this is just a repeat of the animation when the force is travelling on the

string, so here you do not see that initial value problem solution, now this is at low speed where

v over c is 0 point 1, so it is ten percent of the critical speed.

In this animation, this is a near resonance, so point 95, v over c 0 point 95, so it is 95 per cent the

critical  speed,  here  you will  find  those  reflections  of  the  clings  etc.  they  are  not  so  easily

observable at least, and the amptitude is growing as the force moves from left to right which is a

typical  behavior  of  near  resonance  solution,  so  at  resonance  you  know the  amptitude  goes

linearly with time, this is near resonance slightly lower, so you can see the behavior of the string.

It is distinctively different from the previous behavior, these motion, this is an transion motion,

this has to be understood in terms of the propagation of waves in the string, which we are going

to take up later in this course.
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So we have looked at modal expansion solution,  there is another method which we are now

going to  look at  briefly, we have  already come across  this  Green’s function  method in  our

previous lecture, so what we are going to solve is , so in the Green’s function method we solve a



problem of this type, where the forcing has a very special form, these are Dirac delta functions,

or Dirac delta distributions.

So the forcing is of a very special form like this, so what in effect this represents, is it represents

an impulsive loading at the location x equals to x bar and time t equal to t bar. So, we give an

impulsive loading at the location x equals to x bar in the system and time t equal to t bar and we

are going to  look at  the solution of  the system a loading,  here the boundary conditions  are

homogenous and initial conditions are all 0, the solution of this system is known as the Green’s

function.

We will  represent  this  in  this  form,  so  these  are,  these  points  are  important  that  we  have

homogenous boundary conditions and zero initial conditions, so always this Green’s function is

calculated  with  these  conditions,  so  this  will  be  classically  assumed  whenever  homogenous

function is calculated, so homogenous boundary conditions is zero value condition. So we know

in previous lecture, how non-homogenous conditions can be converted to homogenous boundary

conditions.

So if required we have to do that and then calculate the Green’s function. So why let us first look

why this or how this Green’s function method works. So, we claim that for any arbitrary forcing,

when we have forcing in the form of qx, t general forcing, then the solution actually can be

obtained in this form, so once we have the Green’s function, the solution to an arbitrary forcing

can be determined like this. So let us see why this happens, or how this is happening.
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So,  let  us  see why this  happens,  or  how this  is  happening,  so let  me write  this  differential

equation, so let me write this differential equation as, so this is our problem, where p, so I am

representing this full operator using p, now we do is we are actually solving this problem first

with this of course the homogenous boundary conditions and zero initial  conditions and then

what I said was the solution is given by this.

So, let me apply the operator t on this, not his integral over x bar and t bar so this operator can go

inside and it will operate only on g and we know that p of g is and this is equal to therefore, so

therefore this is definitely a solution of, so w given by this argument is definitely a solution of

this system, so this shows that we have the solution w in terms of the Green’s function.
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Now let us calculate the Green’s function for string, so we are giving an impulsive loading t

equal to t bar is equal to x equal to x bar and the solution is a Green’s function and we are

considering  homogenous  conditions  and  zero  initial  conditions,  so  ,  first  what  I  will  do  to

determine  Green’s functions,  so we have  to  solve the  Green’s function  now by solving  this

system, this problem, so what we are going to do to simplify things is we will take the Laplace

transform of this equation.

So we define Laplace transform as follows, we know that the laparce transform of, here this is

zero because the initial conditions are zero, similarly laparce transform is given by this width

zero,  initial  conditions,  now once  you take  the  laparce  transform of  this  equation  then  and

rearrange, we obtain this equation along with the boundary conditions like this, so this is our

boundary value problem that we need to solve now.

So this is, we have homogenous boundary conditions, so therefore we can look for solutions in

this form.
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So, substituting in this boundary value problem and when we rearrange, take the inner product

both sides sin n pi x over l, so we substitute and take inner product, so we substitute this in

differential equation, take inner product with sin n pi xn over l on both sides and then it filters the

n th coefficient, which I can write and this can be done very easily, so we will obtain this co

efficient and finally the solution, therefore is obtained.

Now this is this solution in the laparce domain, now we have to take inverse laparce transform,

which can be done by residue theorem and the final solution, these are simple steps, I will write

the final solution, here this is the heavi side step which comes from the causality which means

the solution does not exist before the impulse is provided, t less than t bar is zero, the solution is

zero, so this solution is not zero only when t is greater than t bar.

So, this is your solution on the Green’s function and as I have discussed for any arbitrary forcing

you  can  determine  the  solution  using  this  integral,  so  this  is  a  very  powerful  method  of

approaching forced vibration problems with arbitrary forcing, now you can so we know how to

solve the Green’s function method here, here we have used the modal expansion technique to

solve the boundary value problem.

In a previous lecture, we have seen how the Green’s function was solved in a different method,

so  this  approach  gives  us  a  very  powerful  method  of  solving  forced  vibration  problem  of



continuous  systems,  now  in  this  lecture  we  have  considered  the  general  forcing,  of  one

dimensional continuous systems and we have looked at the modal expansion technique and the

Green’s function technique for solving the forced vibration problem of one dimensional systems,

so with that we conclude this lecture.


