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Lecture – 13
Forced Vibration Analysis - II

So in the previous lecture we had initiated discussions on forced vibration analysis of one

dimensional  continuous  systems.  So  in  our  previous  lecture  we started  with  the  case  of

harmonic forcing, which as we discussed is separable forcing in space and time. So just to

reiterate let me recapitulate the what we started.
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So we were looking at the forced vibration analysis of a system governed by this equation of

motion  along with  boundary conditions  say for  example,  that  is  a  zero  and some initial

conditions. So this was our problem to, this problem we considered, we observed that the

solutions can be written out as the homogeneous solution which we expanded in terms of the

eigen functions of the unforced problem.

And  so  this  was  the  homogeneous  solution  and  along  with  that  we  have  the  particular

solution where this X is the amplitude function of the particular solution and these are the

eigen functions. So this is the solution form that we have for a system like this and when we

substitute this solution in the equation of motion what we obtain is, so this homogeneous

solution actually goes to zero once we substitute in here.



The contribution from the particular solution which can be written upon simplification and

along  with  this  the  amplitude  function  of  the  particular  solution  must  also  respect  the

boundary conditions. So for these boundary conditions corresponding we have these as the

boundary conditions on the amplitude function. Now these we defined as the boundary value

problem.

So this  is  the boundary value  problem which we have to solve in  order to  calculate  the

amplitude function of the particular solution. So this is the unknown here and of course we

have unknown c k and s k which must be determined from the initial conditions after we have

solved, this amplitude function of the particular solution. So we solve this boundary value

problem determined X substitute it here and then apply the initial conditions to solve for c k

and s k.

And the solution of c k and s k we have seen in one of our previous lectures. So today we are

going to focus on the solution of this boundary value problem. Now in the previous lecture

also we discussed about the solution in terms of eigen function expansion method, using the

eigen function expansion. Today we are going to look at the solution of this boundary value

problem using what is known as the Green’s function method.
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Now what is this Green’s function, so now Green’s function is the solution of the boundary

value problem, so we write it like this. We represent the Green’s function using G, such that

so this was the differential equation of the boundary value problem as you can see here. So

the Green’s function is a solution of this differential equation with a very special form of Q of



x which is the dirac delta applied at x equal to x bar. So this is the dirac delta distribution.

And of course the Green’s function also satisfies the boundary conditions of the problem. So

this boundary value problem defines the Green’s function. So you realise that the Green’s

function is the solution of with the special forcing in terms of dirac delta applied at x equal to

x bar. So which means that Green’s function is the solution of one dimensional continuous,

what we are discussing at present.

So one dimensional continuous system, when you apply a harmonic concentrated forcing of

frequency capital omega applied at the location x equal to x bar, so the solution of that system

is the Green’s function. So therefore the Green’s function is a solution, is the amplitude at x

because of a harmonic forcing of frequency capital omega applied at x bar. So that is the

significance of this Green’s function.

Now  when  we  talk  about  Green’s  function,  we  always  use  homogeneous  boundary

conditions,  is  the boundary conditions  must be homogeneous like this.  Now if  it  is  non-

homogeneous, then we have discussed in one of our previous lectures how to homogenise the

boundary conditions. So we are going to discuss the Green’s function in the context of only

homogeneous boundary conditions.

Now how is these solutions of this Green’s function going to help us in solving a problem

with an arbitrary forced distribution, Q of x. So let us look at the problem. So let me write

again, so this is the problem of course with is boundary condition, this is what we want to

solve.  We claim that  the solution  of  this,  so the  amplitude  function  corresponding to  an

arbitrary forcing Q of x is given by integrating over the domain of the problem for forming

this integral.

So we integrate over x bar, we integrate over x bar from zero to l and we are left with a

function of x which is the solution of this problem. So this is what we have to show. Now let

me rewrite this differential equation as, this is only a way of representing this in a short form.

So I will write this as some l, some operator l acting on x gives Q. So this l is, so this is l. So

this is only a short way of abbreviated way of writing.

Now if this is the solution, let us see what happen if this is the solution, I substitute this in



here. So l, so this is the linear differential operator. So I can, I assume that this can commute

with this integral, because this integral is over x bar l is an operator on x so here I can write, I

can interchange the integral and the operator and since this acts on functions of x. So it will

act only on G.

Now L acting on G is what we already know, so this is nothing but L acting on G so therefore

this  integral  actually  reduces to delta of x minus x bar, integrated over x bar and that is

nothing but Q of x which is the right hand side. So which means that this must be a solution

to this problem. So we need to solve for this Green’s function which is for a very special form

of force distribution and which might possibly be quite simple as well, we hope.

And  once  this  is  done,  then  we  can  given  any  force  distribution  we  should  be  able  to

contingent on this integration being performed or can be is doable then we can easily solve

for the amplitude function for an arbitrary forcing in which case the solution we can write our

solution  of  the  original  problem as  the  homogeneous  solution  plus  the  real  part  of  this

argument.
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So we can easily find out the total solution and from here the unknowns can be found by

using the initial conditions. Now the problem remains that how to solve for this G. So let us

take this example of a string once again. So we have a concentrated harmonic forcing at x

equal to x bar. So this is the problem we are going to solve essentially. So finding out the

Green’s function is essentially solving this problem.



And if you write down the equation of motion and you substitute the solution form that we

have been considering. So we get the boundary value problem. So we are going to solve, so

let me write down the equations. Let us solve a problem like this. So this with the boundary

conditions, so this is the problem we want to solve. The boundary value problem for this can

be written as, so this is our boundary value problem.
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Now to solve this but we do is, we are going to look at two regimes of this string. So one is

let me call this as the left regime and this as the right regime. So from zero to x bar is the left

L and from x bar to L is the right regime R. So in these two regimes, we can rewrite this

differential equation of the boundary value problem as.

So this differential equation of the boundary value problem over these two regions of the

string can be written like this. So only at x equal to x bar there is this dirac delta function

acting. In the other regions, there is no forcing. Now we can easily write the general solution

of, for the Green’s functions in these two regions. So these solutions can be written as

So over  the  two regions  we have  these  two solutions.  Now we also  have  the  boundary

conditions. Now we also have the continuity conditions add this junction x equal to x bar. So

you see the solution of the boundary value problem, the differential equation of the boundary

value problem, so the general solution is given by this. Now we have these four unknown

coefficients, AL, BL, AR and BR, which are to be solved in order the determine the Green’s

function.



So we will need four conditions for solving these four unknowns. Now two conditions are

obtained directly  from the boundary conditions.  One further  condition has  been obtained

from the continuity of the string at x equal to x bar. The fourth conditions must of course

come from the force condition. So we have this, the force balance at x equal to x bar. Now

this force condition for the string can be easily found by directly integrating the differential

equation of the boundary value problem.
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So our differential equation of the boundary value problem is given by this. So if we integrate

this both sides of this equation over the domain of the string, then we can easily obtain the

fourth condition which is nothing but the force balance condition at the junction x equal to x

bar. Now here, we can so this therefore implies.

Now over this interval zero to l in almost or at almost all points, this integrant is zero except

at x equal to x bar. So this we can write as. So from zero to x bar minus epsilon this integrant

is zero. From x bar from epsilon to l, is integrant is again zero. So it is only small region

around x  equal  to  x bar,  we,  I  mean this  integrant  is  non zero.  So that  is  what  we are

interested in finding now.

So this term when integrated over such a narrow region from x bar minus epsilon to x bar

plus  epsilon  since  G  is  a  continuous  function,  as  we  have  already  put  the  condition  of

continuity on G, for a continuous function G, the integral over diminishing domain goes to

zero because G is continuous and it does not have any sharp discontinuity etc. Now this term

can be integrated once and what we have.



So this term is not contribute in this integral, this term is going to because the first integral of

this will be the slope of, will represent the slope of the string. It will del G del x that represent

the slope of the string. Now string does not resist bending movements so it can have a slope

discontinuity.

So  therefore  this  actually  can  be  written  as  and  that  implies.  So  now  we  have  all  the

conditions require to. So here we have one condition and here we have three more conditions.

So these four conditions can be used to now solve for these unknown coefficients, AL, BL,

AR and BR.
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So if  you use these four conditions  and solve for these unknowns and finally  put in  the

Green’s function, then what you obtain is, so this when x is between zero and x bar. So this is

our Green’s function for the string, when a concentrated harmonic force of circular frequency

capital omega acts at x equal to x bar.

Now  this,  then  once,  we  have  this  Green’s  function,  then  corresponding  to  any  force

distribution Q of x, we have seen that. The amplitude function of the particular solution can

be written as, now this we are going to now solve an example and see how this integration

can be performed.
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So we consider a string with a uniformly distributed harmonic force. So let us see this, so this

is a string taut string on which we have a uniformly distributed harmonic force. We have

looked at this example in the previous lecture also. So let us now solve this same problem

with  this  Green’s function  method,  using  the  Green’s  function  method.  So  we  have  the

equation of motion with boundary conditions.

So we are right now more interested in solving the particular solution. So this is, I mean this

is the formulation of the problem for this uniformly harmonically forced taut string. So the

solution is a homogeneous solution plus we have the particular solution and this form and we

have already derived the Green’s function and we need to solve this amplitude function of the

particular solution by performing this integral.

In our case, Q of x bar, so I will rewrite this equation so as to match the differential equation

for which we solved the Green’s function. So our Q of x bar is nothing but this. So we have to

perform this integral of the Green’s function from zero to l. Now remember that this Green’s

function is a response of a system of the string when concentrated harmonic forces applied at

x equal to x bar.

So this is the response, so the amplitude at x is given by this Green’s function. Now we are

looking at this string from zero to l. We want to find out the amplitude function capital x at

any location x, an arbitrary location x. Now this integration has to be performed over x bar

from zero to l.



So if you are interested at a particular location x the solution at particular location x then,

when we perform this integral there will be a region from of this integral from zero to x and

from x to l. So x bar which must go from zero to l can be broken up from zero to x, x bar

going from zero to x and from x to l. So we are going to actually perform these two integrals.

So let us see what are these two integrals.

So let us see what are these two integrals. Now from zero to x, so x bar lying between zero to

x. Let us once again look at the Green’s function. The x bar lying between zero to x which

means x bar is less than x. So this is the function corresponding to this integral, the integrant

of  this  integral.  Whereas  from x to  l,  when x bar  is  greater  than  x  so  this  must  be  the

integrant. So let us now carry this out.
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So therefore, so this is the first integral and that is the second integral. Now performing these

integrals is straight forward. So this, and if you simplify these terms, so if you open this, so

this is what you obtain and upon further simplification, so this is obtained as, so this is the

amplitude function of the particular solution.

Now you can check this expression with what we obtain in the previous lecture when we

solve this problem exactly. So this was exactly the expression of the amplitude function. So

when we solve problems of forcing with Green’s function, what we need to look at this is this

integral over the domain and this has to be performed little carefully taking into account, the

regions of the problem, of the string for example what we have looked at today.



Now  this  Green’s  function  can  also  be  determined  using  the  modal  expansion  that  we

discussed in the last lecture.
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So let us briefly look at this method of solving the Green’s function using modal expansion or

the eigen function expansion method. So our eigen value problem for the Green’s function

the differential equation, this is the boundary value problem for the Green’s function is given

like  this  and  what  we  discussed  in  the  previous  lecture  was  that  the  solution  of  this

differential equation can be represented as an expansion in terms of the eigen functions of the

unforced problem.

So the  eigen functions  of  the  unforced problem that  we have  already solved.  So if  you

substitute this expansion in the differential equation of the boundary value problem, then, and

remember that this eigen functions already satisfy the boundary condition so therefore the

Green’s function is also guarantee to satisfy the boundary conditions of the problem. Now

this is a linear differential operator.

So therefore we can exchange this summation with operator and rewrite this and from the

eigen value problem of this operator we also know that, so this is what we have, so this is the

statement of the eigen value problem, the differential equation of the eigen value problem. So

if you substitute in here and simplify.Now to solve this equation for this unknown alpha k.

We use orthogonality property of eigen functions which means I take inner product with W j

on both sides. And using the orthogonality, then it filters out the jth term of this expansion. So



what we obtain is upon simplification. So we have obtained the coefficient alpha j and this

can be done for all j one to infinity and we can solve for all these infinitely many coefficients

alpha j and once I have this I can substitute back in here.

And I have the series expansion of the Green’s function in terms of the eigen functions of the

problem. So this is how we can also solve the Green’s function using the eigen function

expansion, a method which we have also discussed in detail in the previous lecture. So what

we have looked at in this lecture today, we have solved the boundary value problem which

arises in the force vibration analysis. 

So this boundary value problem actually gives us a solution of the amplitude function of the

particular solution. In this lecture today, we have solved the boundary value problem using

the Green’s function method and we have looked at one example that we also, and we took

this the same example in the previous lecture and have got the same, we have compared the

solution with that obtained in the previous lecture. So with that we conclude this lecture.


