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Forced Vibration Analysis - I

We have  been  looking  at  the  response  of  one  dimensional  continuous  systems  to  initial

conditions and we have also looked at how this initial value problem can be recast as a forced

vibration  problem.  Now  in  this  lecture  and  in  the  next  few  lectures,  we  are  going  to

concentrate on the forced vibration analysis of continuous systems. Now the question actually

arises what are the sources of forcing, how or why we should study forcing. 

So there are various reasons, for example, you can have a system with an actuation, say for

example, for vibration control or for some other control. So these actuators they will excite

the system, the modes of the system. Secondly, you can have a fluid forcing for example, a

bridge or high rise building that will be excited by the flowing wind. So that provides forcing

to structures. 

Then  there  are  earthquakes  and  such  natural  sources  of  forcing  and  finally  and  very

interestingly forcing is also used for evaluation and testing of materials.  For example,  to

detect flaws or phases or faults in material or in a structure. So from these considerations, it

becomes important to analyse forced vibrations of systems. So let us briefly look what the

ways of forcing a structure.

So you can have an actuator, you can just attach an actuator to on the structure and you can

force it. You can force a structure like a string by bowing, so in a violin for example, you use

a bow to excide the string by bowing or you can put, you can hit the structure with an impact

hammer and that gives us impact or impulsive forcing to the structures. So today, we are

going  to  look  at  forcing,  we  are  going  to  start  our  discussions  on  forced  vibrations  of

continuous systems, one dimensional continuous system.
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So let  us consider a system, let  me first  formulate  the problem mathematically. So for a

system which can be put in this form, the kinds of system we have been discussing can be put

in this form. So here, this represents a general forcing. Now along with this of course you

have the boundary conditions, let us say zero, just to take an example and you have initial

conditions.

So  this  is  the  complete  formulation  of  the  forced  dynamics  of  a  system  that  can  be

represented by this differential equation. Now this forcing terms as you can see makes the

equation of motion in homogeneous. So we no longer have w equal to zero which is the

trivial solution, as a solution of this system.

Now there can be various kinds of forcing, you can have harmonic forcing, which is the most

common kind of forcing specially when we are evaluating or testing a structure we provide

harmonic forcing and we try to see the response of the structure whether it matches with our

expected response or not.  So this harmonic forcing is one of the very important types of

forcing which we are going to look at.

The second is the general forcing which can be, so in the harmonic forcing for example, your

q of x t can be for example, q of x Q of x times cos sign of omega t, where omega is the

forcing frequency. So is the forcing circular frequency. So here as you can see, this kind of

forcing is separable in space and time, possibly separable. So for example, one term, one

frequency forcing like this, so you have this as a separated in space and time.



Now this is the amplitude function or the distribution of the force and this is the temporal

variation of the force and any periodic forcing as you know can be represented as a series of

harmonic forcing. So if you know the solution for the harmonic forcing, then you can also

find out the response to any periodic forcing. So we can also deal with periodic forcing if we

know how to find out the response to harmonic forcing.

Now when you have this non-separable, the space and the time part non-separable and we are

going to look at some examples of this forcing and we have actually looked at one of the

examples of general forcing when we write the initial value problem as a forced vibration

problem. And we are going to discuss this shortly in the later lectures. So today we are going

to focus on the harmonic forcing.
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So let me write the differential equation of motion as, so the forcing that I discussed just now

can be represented as a real part of this complex forcing term whereas I mentioned, this is the

force distribution function, this is the circular frequency of forcing and this are R represents

the real part of this argument.

Now the solution, so this of course along with the boundary and the initial conditions will

completely specify the forced vibration problem. Now first we write down, must write down

the general solution of this differential equation. So as you know, the general solution of such

a differential equation can be written as the homogeneous solution, which means the solution

with zero forcing plus the particular solution which is due to this forcing.



So this kind of a solution satisfies this differential equation since the homogeneous solution

will actually go to zero once you substitute here, the particular solution will satisfy or equate

the right hand side. So the solution, the homogeneous solution we have been looking at this

homogeneous  solution  in  the  last  few  lectures,  it  can  be  represented  as,  so  this  is  the

homogeneous  solution  which  is  expanded  in  terms  of  the  eigen  functions  of  the

corresponding eigen value problem.

So the eigen value  problem was obtained by considering  the  homogeneous  problem and

searching for special solutions which are separated in space and time. So these, so from there

we obtained these eigen functions and we have been representing the solution for solving

various kinds of problems for example, the initial value problem. So here again we come

across the solution, so this the homogeneous solution and this is the particular solution.

So which satisfies or which meets this non-homogeneous term on the right hand side of the

differential equation. Here this is the amplitude function. So the amplitude functions of the

response. So as you know that in a undammed system the response is proportional to this

harmonic time function. So we have written this out as the real part of this amplitude times

exponential i omega into t.

Now if we substitute this solution from in the equation of motion, the differential equation,

then what we obtain, so this term is going to go to zero. So what remains comes from this

term and if you substitute this and make a little bit of simplification of the equation then what

you will obtain is, so this is the differential equation in x. So this amplitude function, so X of

the space coordinate x.

So this is the differential equation that you obtain by substituting this solution in this equation

of  motion.  Along  with  this,  you also  have  the  boundary  condition  which  this  amplitude

function must satisfy this comes from the boundary conditions which we wrote out when we

formulated  the problem.  So what  we obtain  is  the differential  equation in  this  amplitude

function with, along with these boundary conditions.

This specifies what is known as the boundary value problem. So this is the boundary value

problem corresponding to the amplitude function of the particular solution. So we must solve

the boundary value problem in order to solve this amplitude. Now there are, there can be



various ways of solving this boundary value problem. One is the eigen function expansion

which is what we are, we have been looking at in the past few lectures.

This words on the premise or the fact  that for self-adjoint  problems, you have the eigen

functions which are all real and which form a complete basis for the system. So by complete

basis, I mean that, any configuration or shape of the system can be represented in terms of

these eigen functions and we have been looking at this method for in the past few lectures.

So you can represent any shape using these eigen functions as we have done even for the

homogeneous solution. So this eigen function method is one of the methods that can be used

to solve this boundary value problem, the other is the green’s function method. So this is

another method which we are going to look in, in the next lecture. So today, we are going to

focus on this eigen function expansion method for solving the boundary value problem.
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So  what  we  are  going  to,  so  in  the  eigen  function  expansion  method,  so  we  have  our

differential equation of the boundary value problem in this form, we are going to expand this

solution, the general solution of this differential equation in terms of the eigen function of the

problem. So these are the eigen functions of the problem which we have obtained previously

by solving the homogeneous problem.

So if you substitute this expansion in the differential equation then, so here of course these

alpha k’s are constants which are to be solved. So this is what we obtained. Now this k is

linear differential operator. So I can exchange the summation and the operator and right it like



this.  Now recall  that  the  eigen  value  problem for  this  operator  for  the  system read.  So

therefore I can write the operator acting on the K eigen function in this form.

Now this is what I am going to replace here.  So if I do that and simplify, so this  is the

equation that I obtained which has these unknown coefficients alpha k which I now need to

solve. So for this, we can use the orthogonality condition for the eigen functions. So let us see

how we can solve using the orthogonality condition.

(Refer Slide Time: 24:45)

So the orthogonality condition of the eigen function for the system that we are considering

that can be represented as, so for j not equal to k, we have this orthogonality condition. So we

sometimes denote this as the inner product like this. So to solve these coefficients what we

can do is we can multiply both sides with the jth eigen function and integrate over the domain

of the problem.

So will say that we take inner product the jth eigen function and when we do that what this

does in effect because of this orthogonality only the jth term is filtered out. So which means if

we do this inner product, we take the inner product then what we are going to obtain this

condition and therefore,  so that is the solution for alpha j,  now I can take j  from one to

infinity and solve for all these alpha j’s.

But then this is contingent on the condition that the forcing frequency is not equal to any of

the natural  frequencies  of the system. So the circular  forcing is  not  equal to  the circular

natural  frequency, any of the circular  natural frequency of the system. So otherwise,  this



alpha, the corresponding alpha j will go to infinity. So you do not have a finite solution in that

case.  Now let  us look at  the situation  when,  so this  completes  our solution  for  the non-

resonant case we may say.
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So then finally you can as I had wrote, I will write this again, so we have the solution and the

particular solution will be obtained as in this form. Now this now has to be substituted in the

complete solution and remember this homogeneous solution has these unknown constant c k

and s k which I had written just a few moments ago. Those constants are to be determined

from the initial conditions.

So we have to apply the initial conditions to solve for the c k and s k in the homogeneous

solution. So that will complete the solution of the forced vibration problem. So this part we

have  already  done  in  a  previous  lecture,  how  to  solve  for  these  constants  using  initial

conditions so will not repeat that here again. Now we are going to look into this condition,

what happens if we have a resonant forcing.
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So let us consider the case of resonant forcing. Let us assume that the forcing frequency is

equal to one of the circular natural frequencies of the system, let us say that the jth natural

circular natural frequency. So the forcing frequency is equal to the jth natural circular natural

frequency of the system. In that case, our solution, so let me write this equation once again.

So we have is, we have, so this is what we have.

So therefore our particular solution we must now, we cannot consider this, so let me write

down this particular solution as. Now we have been expanding this x, the amplitude function

of the particular solution in terms of the eigen functions will do that but now because of this

resonant forcing and if you look at the solution that we just now derived, when omega, this

capital omega equals omega j, so this is going to be undefined.

So to prevent that we are going to expand this as this for all k except k equal to j. So the same

expansion  works  for  all  the  non-resonant  mode,  for  the  resonant  mode we are  going  to

consider, or assume that this coefficient is now a function of time. So this is going to be our

expansion. Now here, so this we have considered to be a function of time as we do in for

example, for (()) (35:32) method, so variation of parameters.

So we assume that this is a function of time and we substitute this expansion in here and the

particular solution into our differential equation, then for all the non-resonant modes we have

a way of solving just as we discussed just now. For the resonant mode, we are going to obtain

a differential equation corresponding to alpha j which is obtained as, if you substitute this and

take inner product with w j, this is what you are going to obtain on account of orthogonality.



Now, this  differential  equation  we  know from our  previous  studies  that  this  differential

equation admits a solution of this type where beta j is now a constant, it could be this but then

if when you substitute and evaluate this vanishes. So we have this only beta j and beta j, if

you substitute this solution from in here, then, so this is the solution for beta j and once you

have the solution for alpha j then you can substitute this in this expansion.
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And what you will obtain is, so there as you can see that this beta j is, there is one 2 i in the

denominator, so this complex imaginary and when you substitute this and take the real part as

here. So when we substitute this whole expansion and take the real part what we are going to

obtain finally upon simplification. We obtain the sin omega j t when we take the real part

because of that i, sitting in the denominator of beta j.

And along with this we have the other terms. So this competes the solution of the particular,

particular solution, now once again you have to add it with the homogeneous solution and use

the initial condition to solve the constants in the homogeneous solution. Now here we see

something interesting in this solution form.

In the numerator of this term, so as usual the resonant mode, the amplitude of the resonant

mode has an envelope, which is linearly increasing with time. This is what we all know that

this  is  what  happens at  resonant  for  the resonant  mode,  this  is  what  happens.  Now in a

continuous  system like  this  we have  this  integral  in  the  sitting  in  the  numerator  of  this

resonant solution.



Now this integral in general can be, it will be non zero but then there are special instances

where this will actually vanish. So let us look at some situation. So if you consider omega j to

be  the  second  natural  frequency.  So  omega,  the  forcing  frequency,  the  circular  forcing

frequency is equal to the second circular natural frequency of the system. In that case, as you

know for a string let us say, for a string, for a taut string we have the eigen function sin of 2 pi

x over l. So this is the eigen function of the string, the second mode.

And if we have a string which is being forced at the middle so this let us say is the string and

suppose the forcing is of this form is being applied at the middle. So if you then substitute

this so Q of x in this case is and if you substitute these two expressions here, then you can

easily see that this integral vanishes. So if this integral vanishes, even though you are exciting

at the second natural frequency of the string.

So this is omega 2, capital omega is omega 2. The second mode will not show the resonant

behaviour which means that because of this integral vanishing so this term will drop out from

the solution. So the response of the system will still be finite. So force like this cannot excite

this mode, it cannot excite this mode because this forcing is at the node of that mode. So this

is one situation where there will not be any forcing.

There can be other situations, and one such example we are going to look into very shortly.

So this, what we see here is that in a continuous system just forcing the system at a resonant

frequency does not mean that you will observe a resonant solution. So the location of the

force is also important in these situations. 
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Now to look at what we have been doing, let us take an example, so this is an example of a

taut string with uniform harmonic forcing. So let me represent the situation that we have, so

this  is  the  string  and  the  forcing  is  a  uniform,  so  the  distribution  is  uniform.  So  the

mathematical problem, the differential equation, the boundary conditions on the two ends, so

it is a fix-fix string.

Now we are going to look at solutions in this form, if you substitute this in the equation of

motion and removing the cos sin omega t term for throughout then we get this along with the

boundary conditions. Now we can, we will simplify this little bit by dividing the whole thing

by the tension and T over row A is c square.

So I will write it like this. Now this is the boundary value problem of our system which we

are now going to solve. So as we have done, we know that the eigen functions of the taut

string are of this form, so we are expanding in terms of this eigen function and when we

substitute in here and let me so these steps are quite simple, let me write out the solution.

So I  substitute  this  in  the differential  equation  and take inner  product  with the jth  eigen

function.  So when I  do that  I  can obtain  the solution  of  alpha  j,  these steps  are  straight

forward. So you obtain the solution for alpha j and you can put in any value of j and you can

get this alpha j and now you can substitute in the expansion to obtain the amplitude function.
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So let me write out particular solution then, so cos of k pi minus 1. So that completes the

particular solution. So this is the particular solution of the problem. Now this boundary value

problem can also be solved exactly as like this differential equation is straight forward and

the solution of this differential equation can be easily written as. So this is a general solution. 

Now  see  here,  in  the  previous  solution,  we  did  not  have  to  worry  about  the  boundary

conditions because we have expanded in terms of the eigen function which already satisfy the

boundary  conditions.  But  now we  have  solved  this  exactly  now we  have  to  satisfy  the

boundary condition, so if you solve for this constant D and E. You can easily obtain these

constants which can be substituted here and you can once again get the particular solution.

But now the particular solution is close form expression, so this is the solution which is now

in the closed form. So we have kind of summed over all these terms to obtain this. Now here,

one thing to note is you have this cos k pi minus 1, so for even values of k this is going to go

to zero, this bracketed term is going to go to zero. So therefore you will have only odd, so

only for k odd, you will have non zero coefficients.
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Now in this figure, in this slide I have compared these solutions, the exact solution, the closed

form solutions with a series solution taking up to three terms. So if you look at, so I have

taken the forcing frequency very close to the first natural frequency of the string is point nine

times  the  first  natural  frequency  and you  can  see  that  the  exact  solution  and the  series

solution, they match. 

Actually I have plotted this series solution taking one term, another solution with two terms

and another solution with three terms. Now in the first plot, they are indistinguishable with

the exact solution. This is when you force it close to the second natural frequency. So two

times omega 1 is actually omega 2 for a string as you know that they are integral multiples of

the fundamental frequency, so this is close to the second natural frequency. 

The forcing is close to the second natural frequency this dash curve is the series solution with

only one term. So you can see that this deviates considerably from the actual solution. While,

when you take two terms or three terms in the series, then they are matching quite nicely.

This is when the forcing is close to the third natural frequency, you see the one term series

solution is quite off while when you consider two terms or three term.

Then they are matching quite nicely with the exact solution. This is when you are forcing at

the close to the fourth natural frequency, again the one term solution is off. The two term

solution is this blue solid line, the red line is the three term expansion series solution and the

exact solution is given by this black solid line. So you can see that slowly as you increase the

forcing frequency and consider higher modes, or then higher natural frequencies.



Then the two term solution is now error, the three term is still quite close but as you will go to

higher and a higher, you will have to take more and more terms in the series to get close to

the  exact  solution.  So we see that  the  series  solution  actually  converges  on to  the  exact

solution. So let us look at what we have studied today, we have discussed the force vibration

analysis of one dimensional continuous system.

We have  looked  at  harmonic  forcing  and  we  have  solved  this  problem using  the  eigen

function expansion method. We are going to continue this discussion in the next lecture. We

conclude this lecture.


