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Modal Analysis: Approximate Methods - II

So, in the previous lecture, we have discussed about the approximate methods of modal analysis,

one class of methods which is based on the energy the kinetic potential energy, the Lagrangian

etcetera. So which are broadly classified as energy based methods for modal analysis. Now in

today’s lecture,  we  are  going  to  look  at  yet  another  class  of  methods  which  are  known as

Projection methods.

(Refer Slide Time: 00:55)

So, the motivation for studying approximate methods we have already discussed that analytical

methods  though  they  are  more  preferable  but  are  quite  cumbersome  and  we  can  have

approximate  methods  which  can  give  quick  and  sufficiently  accurate  results.  So  in  today’s

lecture, we are going to look at these projection methods which work directly with the governing

differential equation of the system.
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So these—since this method work with the differential equations directly they can be used very

easily for dealing with non-conservative forces, non-potential  forces et cetera.  So since these

terms they can directly written in the equation of motion and they are little tricky to introduce in

the Lagrangian as such though they can be done in that way. But if method works directly with

the equation of motion then these non-conservative terms and non-potential forces they can be

handled quite effectively.
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So what do we in this  Project  methods.  So let  us discuss in  the context  of this  equation of

motion. So – so let us consider a differential equation which has a structure like this so Mu (x)

represents  the  inertia  operator  let  us  say  and  K  is  another  linear  differential  operator.  So



essentially what we are going to do is discretize, so this is the continuous system described by

just partial differential equation. So what we aim to do is to discretise this equation of motion.

So  we  use  the  idea  of  expansion  of  the  field  variable  in  this  form.  One  thing  that  maybe

mentioned here that even though this looks like a separable solution but actually it is not because

this is an expansion had it been only one term then it is solution that is separated in space and

time.  But once you take this expansion it is no longer in a separable solution. Now this maybe

written in terms of vector multiplication like this. 

Now here in this projection methods there is a restriction on the kinds of functions in which

using which we do this expansion. These functions are known as comparison functions. Now

what are comparison functions? These are functions that satisfy two important properties. They

must be differentiable  at  least  up to the highest order of space derivative in the equation of

motion. 

The second important property that they should satisfy is that—they satisfy all  the boundary

conditions of the problem. Now this is very important to note that these functions must satisfy all

the boundary conditions of the problem. This actually makes this method little more difficult to

apply compare to the energy based technique where we were using admissible functions.

So we expand our field variable in terms of this comparison functions and unknown coordinates

of time. So if I substitute this expansion in the equation of motion then of course I do not expect

that  this  solution  will  satisfy  this—this  equation  of  motion  because  in  any  case  this  an

approximate solution. So what we generate is known as Residue. This is known as the Residue.

So this we do not expect that this will be zero throughout the domain. So this function is known

as the residue. 

Now we project this residue in a certain space. So we are looking—I mean this can be thought of

as expanding the solution.  As a linear  combination of certain functions as we had discussed

previously as well and so on. So this point represents the configuration of the system and as this

temporal  functions they change this  point moves in this  space.  Now we have generated this



residue because this  solution is approximate.  So what we can do is we can try to make this

residue zero at certain points.
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There are various ways of doing it, so here we first introduce the idea of Projection. So we have

defined a suitably inner product of two functions, so one is the residue of residue that we have

generated and another function H of x which we can simply defined in this case, and say that this

projection is zero, rather than the residue vanishing identically we say that the projection of this

residue—on certain functions that we will qualify shortly, so this projection is zero.

Since  we  are  searching  for  approximate  solutions  so  we  this  solution  structure  we  have

considered that is approximate since its finite expansion. Once we substitute that in the equation

of motion we generate this residue since this this will not be identically zero. So what we say is

instead of having this identically zero we have weaker condition which says that the projection

of this residue along certain function direction this is zero. 

So that is so we can take N such functions suitably chosen to generate N equations. And thereby

we can attempt to solve for this N unknown pk that we have in the expansion the temporal

function. Now this choice of this functions H that decides the method. So what are the different

ways of choosing these function on which we project? The simplest choice is this Dirac delta

function.



Once  we  choose  this  function  as  this  Dirac  delta  functions  this  method  is  known  as  the

Collocation method. Now what does it mean to choose Hj as Dirac delta function. So if you

substitute these functions here then what you will obtain is—what this means is that this residue

is zero at certain points not at all points but at certain points over the domain. Say for example

for the bar if I choose this xj these points something like this so at these points the residue must

vanish. 

So now there can be various ways of choosing so these points are known as the precision points

or also sometime known as a Accuracy points. Now there can be various ways of choosing this

precision  points or  accuracy points,  they can be uniformly distributed  or there can be other

methods  of  choosing  precision  points  good  way  of  choosing  precision  points  is  given  by

Chebyshev method and they are known as Chebyshev accuracy points. 

(Refer Slide Time: 18:51)

Now let us first look at what happens when we substitute this residue in the projection equation.

So I rewrite the residue and if I consider the projection the functions in this form using Dirac

delta  functions.  Then we arrive  at  this  equation  of  motion,  this  is  the discretise  equation  of

motion where this metrics element are obtained like this. So when we use collocation method we

obtained this discretise system where the metrics elements are given like this.



So let us once again look at the example of the tapered bar.
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 So here we have the fixed free bar once again and we have the geometric boundary condition at

the left hand and the natural or dynamic boundary condition at the right hand. Now we have to

choose  functions  which  we  have  to  choose  the  comparison  functions  which  satisfy  –  so

comparison functions must satisfy the boundary condition all  the boundary conditions of the

problem which means they must satisfy the geometric as well as the natural boundary conditions.

(Refer Slide Time: 22:11)

So let us look at particular choice as shown here. So we have this functions Pj you can check

very easily that.
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So Pj of x, so you can check. So these functions satisfy the geometric boundary condition as well

as the natural boundary condition at the right end. Now we can choose these accuracy points as

we have discussed. We can choose them as uniformly distributed. So if you divide the domain of

the  bar  in  N parts  then  you can  take  these  uniformly  distributed  or  you can  also  have  the

Chebyshev accuracy points which are determined by this expression.

Now this has a nice geometric visualization so this is the domain of the bar. So if you draw a

semicircle with this domain as the diameter and you put in a regular polygon. For example, if

you want to take three accuracy points you have to inscribe half hexagon and the projection of

this corner points on the domain will give you the accuracy point. So this is the Chebyshev, these

are the Chebyshev accuracy points. 

So as you can see this Chebyshev accuracy points will never fall on the ends of the bar. So once

you  use  either  this  uniform  spacing  or  the  Chebyshev  spacing  and  calculate  the  Eigen

frequencies.
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So for uniform spacing what you obtain. So these are the first two circular natural frequencies

when you consider uniform spacing. When we consider Chebyshev spacing then the first two

natural  frequencies  are  obtained like this.  However, if  you look at  the exact  circular  natural

frequencies there obtained like this. So here what we find is the fundamental circular natural

frequency is in some error from the exact circular natural frequency while the second one is more

close.

Now in this collocation method has this disadvantage that this does not have that Upper-bound

property as we saw in the energy based methods. So this approaches the exact natural frequency

from below. But I mean it can also – for example if you see this comparison this is approaching it

from above. So this is a disadvantage of the collocation method. Now, if you calculate the Eigen

functions  corresponding  to  these  Eigen  circular  natural  frequencies.  then  what  we  obtain  is

shown in the screen.
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So if  you look at  the  fundamental  Eigen functions  the  Eigen function  corresponding to  the

fundamental mode. Then within the accuracy of this plot you see you cannot distinguish the

exact method with the collocation method. Though the natural frequency is in some error. But

this  can – of course we rectified  by considering more and more turns in the expansion and

making it more accurate. 

On the other  hand,  if  you look at  the Eigen function  of  the second mode you see with the

Chebyshev spacing it appears to be more accurate because the location of the node matches quite

well with the with that obtained from the exact solution. While that of the uniform spacing is in

some error. So we have looked at-- so this choice of—we have looked at  one choice of the

projection functions H of x. 
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Now we will look at another choice which gives us what is known as the Galerkin method which

is another powerful method which uses the projection technique. Now in the Galerkin method—

so remember that we have expanded where these capital these are comparison functions. Now –

then we generated the residue and we projected the residue on certain functions and put them to

zero.

Now in the Galerkin method we take this projection functions same as the comparison functions

we use for this expansion of the field variable. So this—so this projection gives us is N equation

from which we are going to solve for this N temporal function p of T. Now this – so when we

choose this projection functions same as the comparison functions in expansion then we have the

Galerkin method. 

And when we do this  projection  we obtained  this  discretize  equation  of  motion  where  this

metrics M and K are obtained in this form. So this structure so this is again, so we obtained the

discretize equation of motion of the system.

(Refer Slide Time: 40:04)



Now let us look at this example once again. So these are the boundary conditions at the fixed and

the free end. So once again we choose the comparison functions. We will take two comparison

functions and discretize the equation of motion. So if you do that you will obtain the discretize

equation in this form. Then as usual we do the modal analysis assuming this structure of solution.

And we obtained the Eigenvalue problem, Discretize Eigenvalue problem and from where we

obtained the – the first two circular natural frequencies.

Now this superscript g indicates obtained from Galerkin. Now if you compare—so as you can

see that the fundamental frequency compares very well with the exact while the second modal

frequency is in some error. Now here again if you want to have accurate modal solutions for the

first N modes you use an expansion with 2N turns. So here we can see that the error in the

fundamental frequency is very small as compare to the second. 

Now when you solve this Eigenvalue problem you also obtain the Eigen vectors K.
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Now these are obtained, so once can easily obtain this Eigen vector corresponding to the Eigen

frequencies. And the corresponding Eigen functions—so the Eigen functions are—so this Eigen

functions is obtained as using this Eigen vectors. So for the first Eigen vector for the first Eigen

function you use the first Eigen vector in this vector product. Similarly, for the second Eigen

function use the second Eigen vector in this vector product. 

So these are the two Eigen functions that are obtained from the Galerkin method.

(Refer Slide Time: 50:28)

Now here we can see a comparison of these Eigen functions with the exact solution that we have

obtained previously. So as you can see the within the accuracy of the plot the fundamental Eigen



function is indistinguishable from the exact while in fundamental Eigen functions solved from

the Galerkin method is indistinguishable from the exact solution. For the Eigen function of the

second mode this is fairly close and you can see now that the boundary condition at the right end

the free end is also matching though the location of the node is in slight error.

So in  these  plots  we have  compared these  two Eigen  functions  obtained from the  Galerkin

method with the exact solution. Now this Galerkin method since as we discussed that this is a

method for discretising the equation of motion of the continuous system. So we can use this also

when we have external forcing and which we will discuss later on in this course. 
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So to summarize we have studied in this lecture projection based approximate methods which in

which the field variable is expanded in terms of comparison functions and substituted in the

partial differential equation of motion of the system. Then what we generate is the residue and

this residue will not be zero uniformly over the domain so we use a weaker condition we project

this residue onto certain functions and the choice of these functions decide the method. 

So when we use the Dirac delta function we have the collocation method while if you choose the

comparison function used in the expansion of the field variable themselves as the projection

function then you have the Galerkin method. And these methods of the projection methods they

can handle non-conservative and non-potential forces. So with this we conclude this lecture.


