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Lecture - 01
Transverse Vibrations of Strings - I

In this lecture, we will discuss transverse vibration of strings. So before we start discussing

about vibrations of strings, let us look at what a string is. So here on the view graph, you can

see the definition of the string.

(Refer Slide Time: 00:38)

So a string is a one dimensional elastic continuum that does not transmit or resist bending. So

this is the definition that we will use for a string. So now I will show you some examples of

strings
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So as you can see here this is an ordinary tag which is like a string because it satisfied the

definition that I gave you. That it does not transmit, it is a one dimensional continuum and it

does not resist bending in any way. So whatever shape I give it, it will retain that. So the

restoring force comes when I make it tight. So this tension that I give to this string acts like

the restoring force, the restoring force is produced by the tension in the string

 Otherwise the  string will  take any shape.  So it  does not resist  bending.  This is  another

example of a one dimensional continuum that also does not resist bending. This is a chain and

this is a hanging chain. So this also qualifies to be strain. Here is a guitar string, as you can

see. This is a guitar string. Now, if I give it some bending, if I bend it, it restores back as you

can see here. But still this is called as string.

To understand the reason for this, let us see what happens in a guitar. In a guitar the string is

under tremendous amount of tension because of this tension the primary restoring force is

because of the tension in the string. Of course there is this bending in the string, in this string

which also kind of restores to its original straight shape, but when it is put in a guitar under

tremendous amount of tension, the tension becomes the dominant restoring force.

And hence any structural element which is under high tension, qualifies to be analyzed in the

first approximation as a string. So where do we find strings? So elements that maybe modeled

as taut strings are found in stringed musical instruments such as sitar, guitar, violin, even in

the piano. So we have seen such instruments in which the sound is basically reduced by the

string. 



Then in the cables, in a cable state bridge or in a cable car, so these structures have actually

cables which are under tremendous amount of tension and hence they can be analyzed as

strengths. In high tension cables which are again under very high tension they may be treated

as taut strings.

(Refer Slide Time: 04:21)

So we start with a mathematical model. So how do we model strings. Now in order to model

strings, we will make some assumptions. So here I have listed out some of the assumptions

that we make in modeling the string. So the first assumption says that the motion of the string

is planar.
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So for example here, what I have, I will assume that the string vibrates only in this plane.

Then the slope of the string is small. So when the string deforms the slope at any point of

time is small. The third assumption says the longitudinal motion is negligible. So if I make a

mark here and trace the motion of this mark, as the string vibrates, you will find most of the

time this mark moves transfers to the string. There is hardly any axial motion.

There is hardly any motion in this axial direction of the longitudinal direction. So this is our

third  assumption.  The  fourth  assumption  says  that  the  tension  does  not  change  with

displacement of the strings. So I have put some tension in this string and as I displace, the

tension,  the change in tension is negligible.  So with these assumptions we can now start

modeling our string.

(Refer Slide Time: 06:22)

So, consider a string made of a material of density rho has an area of cross section which

maybe a function of the position coordinate x. It is under tension T and has a length l. so this

transverse motion of the string is measured by this variable w at a location x at a time instant

T. So this shows a string, a stretched string, a taut string which has been displaced from its

equilibrium position which is the x axis.

Now to write out the equations of motion, we will consider an infinitesimal element as we do

in  Newtonian  mechanics.  So  we  will  draw  the  free  body  diagram  of  this  infinitesimal

element. So this element lies between x, the coordinate x and x plus delta x. On the left, this

is under the tension T x, T and it makes an angle alpha. On the right end, the tension is T, x

plus delta x plus t and the angle it makes is similarly alpha x, x plus delta x comma t.



The stretched length of this element is delta s. Now to begin this, we are going to write the

equations of longitudinal dynamics of this infinitesimal element. Now as we have assumed

that the longitudinal motion of this element is negligible, so we will neglect the inertia force,

that is the acceleration in the longitudinal direction.  So we will  neglect  that.  So then the

longitudinal dynamics reduces to just a forced balanced equation in the longitudinal direction.

So let me write out this forced balanced equation. So it is a tension at this right end cos sign

of the angle minus cos the tension at the left end times the cosine of the angle. And along

with this you may have some external distributed forces, external forces. So you may have

some external force distributions as I have indicated here. So these are force per unit length

of the string. So in the longitudinal direction, I have for example this n x comma t.

So I will introduce that also in this equation and that must be equal to zero. Now if I divide

this whole equation by delta x and take the limit, delta x tends to zero. So that will imply.

Now we have assumed that alpha the angle made by the string is very small. So I can safely

assume that cos alpha is almost one. So if I make this simplification of this assumption, then

this equation simplifies to, now this I will write in a shorter form.

So this comma x in the subscript would indicate a partial derivate with respect to x and we

are going to follow this notation throughout this course. So this then is our equation for the

longitudinal dynamics which is essentially a force balance equation.
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So I am going to use the free body diagram for the transverse dynamics. So if I write out the

equation of motion, so mass of this little element can be written as rho times a is the mass per

unit length and the length of this element is almost delta x up to a linear approximation. So

rho a delta x would be the mass of this little element, times its acceleration. So which I will

now write since w is the motion in the transverse direction.

So w comma t t indicates the acceleration, it represents the acceleration of the element in the

transverse direction. So mass times acceleration that must be equal to all the forces in the

transverse direction. So on the right hand we have, and on the left hand we have minus T x t

sine of the angle the left end and plus the distributed force in the transverse direction. Now if

I once again divide this whole thing by delta x and take the limit, delta x tends to zero.

So I have partial derivative of this term with respect to x. Now we have again assumed this

alpha to be very small. So let us see what sign alpha turns out to be when alpha is small. So

sign of alpha is equal to AC over AB. And if alpha is small you can very easily see that this

up to a linear approximation is almost equal to AC over BC, since BC is almost equal to AB

when alpha is small and this is the tangent of the angle alpha.

And this  tangent  of  alpha  can  be  very  easily  seen  to  be  del  w del  x.  So  by using  this

approximation, up to the linear order, I can safely write sign alpha, almost equal to del w, del

x. So if I make this substitution here and make some rearrangement, I obtain the equation of

motion of transfers dynamics of a string.
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So finally, if I look at this slide. Here, I have put together these two equations that we have

just derived, so the boxed equation is the equation of transverse dynamics where this tension

which may be a function of space and time if there is an external distributed force n. Now this

equation of motion, this is a partial differential equation, it is a linear second order hyperbolic

partial differential equation.

Now to solve this, we need boundary conditions and initial conditions. So as you know since

we  have  second  order  in  space  and  second  order  in  time  we  will  need  two  boundary

conditions  and two initial  conditions.  So let  us see,  I  mean,  first  why do we need these

conditions. So briefly, so this equation of motion as we have seen is derived by considering

an infinitesimal element of the string.

This in no way tell us how the string is connected to the ground or if at all it is connected to

the ground, so we would need the description to complete the physical description of the

whole system. So we will need these boundary conditions at the two ends of the stream. And

mathematically if you want to understand this, if you see there are, I mean this equation is

second order in space.

So it  the  space  derivative  is  of  second order. So  upon integration  we will  generate  two

constants of integration and hence to determine these constants of integration, we need the

two boundary conditions. In a similar manner when we integrate the time part we will again

generate two constants of integration which will be solved from the two initial conditions that

are provided.
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So the boundary condition, therefore, complete the description of the system and they are

used for the determination of the constants of this spatial integration.

(Refer Slide Time: 22:31)

Now this boundary conditions are of two types, the first type is known as the geometric of

essential  boundary  condition,  such  boundary  conditions  are  fixed  by  geometry  of  the

problem. The second is the dynamic or natural boundary condition which comes because of

some condition on the force or moment, mostly in a string it will be force. So the dynamic

boundary condition or natural boundary condition is a result of some force condition on the

string. So let us look at some examples.
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So this shows the taut string which I drew before. Now immediately, so this is a uniform taut

string.

(Refer Slide Time: 23:32)

So you can immediately see that the partial derivative of the tension in the string is zero. So

there is no external force in the longitudinal direction of the string. So therefore this is our

equation  for  the  tension  which  implies  that  tension  is  a  constant.  So  if  the  tension  is  a

constant then our equation of motion reduced to this. Here we consider that there is no force

even in the transverse direction.

So we see in the slide that the equation of motion is given by this box, equation so, this is the

equation for a uniform taut string with no external forces.
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Now the boundary conditions, now it is very simple, from geometry you can easily identify

that at the left boundary and right boundary but both the boundaries the displacement of the

string must be zero. So these boundary conditions are set by the geometry of the problem. So

the geometry of the problem says that the displacement, the transverse displacement of the

string at the two boundaries must be zero, so these are the geometric boundary conditions for

the string.

(Refer Slide Time: 25:28)

Next we are going to look at a string with a free or sliding end. So here as you can see the

equation of motion, so the string is uniform, there are no external forces. So the equation of

motion will remain the same as we have discussed before. But the boundary condition at the

right boundary is what we want to see. So at the left boundary we again have a geometric

boundary condition which the displacement is zero at x equals to zero. 



At the right boundary, so to understand the boundary condition of the right boundary let us

look at the right boundary, in a little detail. So this is the mass less, friction less pulley to

which the string is attached. So now I will draw the free body diagrams of this connection. So

at the pulley you have one normal force from the guide, a frictionless guide, so there is only

one normal force.

And from the string, we have this tension at x equal to l. So if alpha is the angle, at any

instance at this end of the string then we can see that from the free body diagram or the pulley

we  can  write  down  the  equation  of  equilibrium  for  this  pulley.  So  if  I  write  out  the

equilibrium in the transverse direction. So if I write out the equation of equilibrium in the

transverse direction for this pulley.

This pulley is massless and frictionless. So we have, this stands out to be zero. So what this

essentially tells us is that the force in the transverse direction on the pulley has to be zero.

Now if I use the approximation that we have discussed, I obtained this condition. Now it so

happens that the tension in this string is uniform, so this can be written even further in this

way. So this becomes our boundary condition at the right end.

So this condition comes from a force condition that the force in the transverse direction on

the pulley must vanish. And if you take the force balance in the longitudinal direction then

you will be able solve for this normal reaction on the wall. So the boundary condition as we

can now see on the slide, is given by tension times del w del x at x equal to l and at all time t

must vanish.

Such a condition, such a boundary condition is known as a natural boundary condition. So

this comes from a forced condition. So the forced free condition, forced free boundary gives

us a dynamic or a natural boundary condition.
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Now let us look at a uniform hanging string or a chain as we have discussed a chain qualifies

to be analyzed like a string. So the equation of motion for this chain can be derived like this.

(Refer Slide Time: 30:55)

So here I show a hanging chain which is made of a material of density rho, its area of cross

section maybe assumed to be uniform for simplicity  and its length is l.  Now as you can

realize this chain will be under varying tension. So the tension in the chain will be a function

of the position coordinate x. So this is what we have to now determine. So we already know

that  this  is  our  equation  for  the  in  the  longitudinal  direction,  the  force  balanced  in  the

longitudinal direction.

So this is force per unit length and n is the force per unit length in the longitudinal direction.

So if I express this, so if the density, since the density of the chain is rho and area of cross



section assumed to be uniform is A, so this is mass per unit length. So rho A is mass per unit

length and if I multiply by the acceleration due to gravity we will assume that this an uniform

gravitational field.

Then the transverse force distribution or the force per unit length of the chain is rho Ag. This

is weight per unit length, rho A is the mass per unit length, g is the acceleration,  so it is

weight per unit length, so which means it is force per unit length in the longitudinal direction,

vertical direction in this case. So if I substitute this, and integrate out, so that is what I have,

the tension as a function of the coordinate.

Now I will use a boundary condition a condition at one of the ends of this chains. So it is

convenient to see that to use this condition that the tension at x equal to l is zero, so that gives

us c which is, and if I substitute back, this is the tension at any point x in the chain. So now I

will substitute this expression in the equation of motion of the transverse dynamics which

reads to obtain and which can be simplified further.

So this is the equation of motion of transverse dynamics of a hanging chain in a uniform

gravitational field. Now again we will need boundary conditions to complete the description

of the problem. So let us look at the boundary conditions for this chain.

(Refer Slide Time: 36:34)

So at x equals to zero, as you can see, so we have a geometric boundary condition. Now what

happens at x equals to l. So what is the boundary condition at x equal to l. Now this is a free

end of the string and this is free to swing. So one may write in a manner similar to what we



have discussed before, so this was the force free condition.  So no force in the transverse

direction. But then remember this tension at this free end is also zero.

So the tension is also zero. So if you imagine the last particle of this chain, it has almost no

restoring force because remember that in the string the restoring force comes because of this

tension in the string. Now this free end of the string, the tension goes to zero, so the last

particle of the string is, I mean hardly has a restoring force in the transverse direction.

So there is a possibility at least theoretically that this displacement might become infinity

because it does not have any restoring force. I mean, the displacement can become very large.

But that definitely we know, we have seen a hanging chain or vibrating chain and it does not

go to infinity. It remains finite. So from the physical consideration we must have a finite

solution at this end. So we write this in this form. So this is an inequality.

So what this says is that the displacement of the string at the free end must be finite. Now

this, when we discuss the solution of the vibration problem of the hanging chain, the solution

of the equation of motion of a hanging chain, we will see that there is a solution which has an

infinity. So what this condition will tell us is that solution should not be present because from

the physical considerations we must have a finite displacement of this free end.

So this we will elaborate or discuss in detail when we discuss the solution of vibration of a

hanging chain. So let us see what we have discussed in this lecture. So we have started with

the motion of modeling the equations of motions of a string, the transverse as well as the

longitudinal. So in the longitudinal direction it is a force balance because we have assumed

that the motion in the longitudinal direction is negligible. 

Then  we  have  derived  the  equation  of  motion  in  the  transverse  direction  of  the  string

assuming it to be planar. Then, we have looked at the boundary conditions that come up in

vibrations of, transverse vibrations of strings. There are two kinds of boundary conditions as

we have seen. The first one is the geometric boundary condition and second is known as the

natural boundary condition or the dynamic boundary condition.



And then we have seen a few examples of strengths of thought strengths and we have looked

at the dynamics of a hanging chain and in each of this cases we have looked at the boundary

conditions that govern the equations. The total description of the system.
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Now along with the boundary conditions we also need the initial conditions which we have

not discussed as yet. So as I mentioned that we need two initial conditions. So these initial

conditions are usually specified as the initial deformation of the string and the initial velocity

distribution over the string. So with these two initial conditions, one on the displacement,

other on the velocity.

We can now completely solve or uniquely solve the equation of motion of a vibrating string.

So with this we complete this part on the transverse vibration of strings.


