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Hi, this is Dr. S.P Harsha from Mechanical and Industrial Department IIT Roorke. Today 

in this lecture we are going to discuss about the Forced Vibration, that you see when the 

forcing frequencies are there on any systems, then how the system is by periodically 

excited. So, as we discussed in the previous lecture about the damping, we know that 

damping is playing a crucial role in controlling the entire exciting frequencies or the 

vibrations. 

So, today you see you know like when the system is by periodically excited then how the 

damping is again you see know like a critical role we are going to discuss. Second 

feature which we are going to discuss about, that you see you know when we are talking 

about a 2 degree of freedom system then how we can frame the equation of motions for 

that. Because we know that when we are talking about the 2 degrees of freedom system 

then there is a Newtonian mechanics in which you see we just want to setup the force 

configurations. 

And based on that we can simply generate the two equations which are simply reflecting 

both degrees you know like of the freedom. We know that there are two you know like 

the different coordinate system of 2 degrees of freedom. Then you see how we can make 

the coupled equations and then how we can generate you see here the solution from these 

two equations. 

What are the corresponding we can say natural frequencies or the characteristic routes 

and then what are the corresponding you see the relative displacement of the masses or 

something you see here which we are generally saying that the Eigen vectors or the 

vibration mode shapes. So, you know like in the previous lecture we know that as far as 

the damping is concerned, there were three modes and all the modes are you know like 

playing critical role in formation of the complete damping. 



So, that is why you see we know that it is really you know like hard to say that this is the 

overall damping phenomena, because the damping is coming right from the 

intermolecular motion to the surface rubbing action to the fluid; whatever the fluid is 

available at the you know like the surfaces. And then what exactly the you know like the 

total resultant of the damping is it is really hard to calculate. 

So, sometimes we are giving you know like a some numerical value it is you see 

irrelevant to say that this is the overall you know like representation of the damping is 

because you see the damping is coming out from the as I told you the inter molecular 

motion and all other aspects. So, again you see here whenever we are talking about the 

damping we need to be very careful that what kind of material which we are using what 

kind of you know like the ((Refer Time: 02:51)) which we are using there and what 

exactly you know like the rubbing actions are there when the dynamic motion is 

happening. In today’s lecture you see we are going to discuss about the free and forced 

vibrations on the 2 degrees of freedom like on that. 
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So, as we discussed about the single degree of freedom system that can be easily you 

know like you know like changed into 2 degree by simply coupling; the similar kind of 

structure to the another form. So, in that way we can produce a same mechanical system 

which can describe the two coupled differential equations, since it is you know like a 



discrete systems, so we have ordinary differential equations there itself. And then you 

see we can form two equations which can represent the 2 degrees of freedom system. 

To specify the state of the systems at any instant we need certainly you see the dynamic 

parameters with respect to the coordinates x 1 and x 2 in which these two whatever we 

can see the masses or anything are simply oriented you know like in their configurations. 

And then you see here based on these two degree of freedom system, we can find out 

that where we can apply the absorber through, which we can effectively control either x 

1 or x 2 of the amplitude of the vibration. 

So, that is why you know like this in 2 degrees of freedom system it is a further we can 

say the refined system in which we can effectively control the vibrations at the root cause 

of vibration. We can apply this concept to any of the equations or the real application 

like we have say forging hammer and the anvil on the ground isolators. We know that 

you see when we are using that, there is you see the contact region in between we can 

say the hammer and the anvil to the surface. So, wherever you see the contact surface is 

there we know that this is somewhat a representation of the elastic deformation or we can 

say we can represent this elastic deformation by the spring. 
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So, as you can see on your screen that what we have the hammer and the an anvil you 

see the forging hammer is there and there is you see the clear relation between the 

surface contacts which we are representing the springs at the concrete block and the 



hammer itself. And then even we can apply the similar kind of concept to the IC engine 

which is mounted on the flexible base. So, IC engine is representing 1 degree and you 

see we have a base of which you see the entire system is rotating that is the another 

degrees of freedom system, we can see that the building floor or anything. 

So, this you know like this is a clear representation which you can see that we have this 

entire you know like the forging hammer and this is my concrete block. I can represent 

this entire hammer as one mass the discrete mass another discrete mass is basically from 

the concrete block in between we have the like the deformation that is nothing but the 

elastic deformation the springs are there we can say right now the spring stiffness is K 1. 

The concrete block is at you know like certain surface and they have some kind of you 

see the deforming features that also can be represented by the springs and that we have 

you see the K 1. So, right from the base we have first spring K 1 stiffness, then we have 

mass m 1 then we have you know like the K 2 spring and then mass 2. So, this is you see 

here we have two independent displacement x 1, which is related to m 1 and x 2 related 

to m 2, which we are using here we can say this system is absolutely falling into 2 

degrees of freedom. 
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And when we are trying to formulate the equations we know that the basic equation in 

which you see the system is you know like at the equilibrium position under all the 

influences of the mass and the forces we can say this is nothing but equals to m x double 



dot plus k x plus c x dot equals to F of t the forced exciting systems. And if we are 

considering say we have since the damping is there and that the property of damping is 

say under damp system is zeta is less than 1. 

Then we know that the complementary function which is simply a representation of your 

free vibration condition is nothing but equals to e to the power minus zeta omega and t. 

This is one of the exponential d k due to the undammed natural frequency into a cos 

omega d t plus b sin omega d t. This is you see know like one of the representation of 

complementary function, which says that you see you have a clear d k of the vibration 

amplitude with the exponential you know like d k and the sinusoidal features are being 

there means both the transient the oscillatory term and we have the sinusoidal features 

together. 

And to obtain the particular integral which is nothing but the representation of your 

steady state formation certainly it is subjected by, the forced vibrations the forced 

whatever the exciting frequencies are. So, we can represent now by this phenomena with 

this equation m x double dot plus c x dot plus k x equals to f 0 sin omega t. And if you 

just want to find out this one certainly now we need to see that what exactly the nature of 

force is. 
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And as you see you know like we have F 0 sin omega t which is nothing but the simple 

harmonic force excitation with the F 0 the initial force input and omega is you see 



whatever the forcing frequencies are. And it will certainly you know like respond in the 

harmonical way at the same frequency which we want, at which you see the subject is 

excited. And there will be a phase lag in the output and the input part, since the input we 

are giving f zero sin omega t. So, output which is coming in terms of displacement there 

may be a phase lag. So, you can see that the if we have the input F equals to F 0 sin 

omega t then our output may be of x 0 sin omega t plus minus whatever you see it is a 

phase lag. So, you know like whatever plus minus phi is we can represent by the graph. 
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You can see on the screen, this you see here the firm line which is simply showing our 

input force. The force is simply going at certain frequency say omega, at the same 

frequency even we are getting the displacement output, but there is a phase lag and the 

phase lag is this dotted line is showing the output, which has may be you see the less 

amplitude as compared to the force. But we have a clear phi, you can see it is simply 

showing by the red feature, there is a phase lag there in that. 

And this phase lag is mainly due to whatever the system characteristics are, that how the 

system is responding as you apply force on the system. When we are now trying to 

simulate these things in terms of the steady state solution or a particular integral solution 

p i 1 we can see that the p i for this kind of feature is nothing but x of p i equals to x 0 

which we got sin of omega t minus phi. 
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And if we are now going into the basic equation that is m x double dot plus c x plus k x 

equals to F 0 sin omega t. Then we can get the output x 0 is nothing but equals to the f 0 

by k that is my input feature f 0 and k is the systems property divided by 1 minus m 

omega square by k whole square minus you know like we can say c omega by k. Or else 

even we can simply show with the various two different features, one we can say that 

there is you know like a frequency ratio. The frequency ratio sometimes you see here 

you can represent that what the exciting frequency, the forcing frequencies and what is 

the exciting natural frequency. 

So, if we want to just convert this sometimes in many of the books you will find that we 

have a frequency ratio r is nothing but equals to omega by omega and omega is your 

forcing frequency omega n is your exciting natural frequency. And even we can 

represent this by the zeta that is the damping ratio c by c c or we can say that you see 

here you know like when you have the omega n which is nothing but equals to square 

root of by k square root of k by m you can put those things there itself. 

So, when you are simply calculating now, what you have when you are simply 

describing these things x into k in the second equation x into k by F 0 is nothing but 

equals to 1 divided by you know like square root of 1 minus omega by omega n whole 

square into whole square plus you see 2 zeta omega by omega in this one. 



So, again as I told you omega by omega n you can replace this omega by omega n by the 

frequency ratio. And then you see here the zeta is already come out, because of your 

damping is present in the system. So, now, what you have, you have this x by F 0 this is 

nothing, but equals to your frequency response the outcome is there or we can say it is f r 

f frequency response function. Because, what you have you have output x 0 you have 

input F 0, this ratio is simply giving the relation that how your output is affecting, when 

you have input F 0. 

And it is being affected by two main feature omega by omega n that is your frequency 

ratio and zeta that is nothing but your damping ratio. And then the systems properties are 

there involving in the formation of r and zeta your damping ratio and the frequency 

ratios. And then also we can calculate this 10 theta that is nothing but equals to how 

much you see the phase differences are being coming out in this, you can see that it is 

nothing but equals to 2 zeta omega by omega n divided by one minus omega by omega n 

whole square. 

So, again you see here either in formation of the phase or in formation of the ratio of 

output by input, these two the frequency ration omega by omega n and the zeta are 

playing a key role. And then you see here when we want to design certain things we can 

simply control these two features as it is. And the total solution if you want to get for you 

know like this particular forcing frequency including the complementary function and 

the particular integral for this under damped system. 

We can simply see that we have x of t is nothing but equals to one the complementary 

function which is simply showing the transient response is nothing but equals to e to the 

power minus zeta omega and t into a sin omega d t plus p cos omega d t that is the one 

part; and another is x sin omega t plus phi or minus phi, whatever you can simply put 

that. 
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So, here the values of a and b the constants can simply you know like calculate using the 

initial condition and the boundary conditions for the forcing functions are that how the 

forcing functions are carried out during the motion. A closure analysis of the above 

equation yields that you see for a very large value of t means, if you are going for say 

higher value of the time for which we just want to solve the equations. 

We know that the transient response, which is coming out from the complementary 

function becomes very small, because your forcing factor at that time is playing a key 

role to carry out the solution. And hence the term steady state response which is coming 

out due to the particular integral is assigned to a particular solution or we can say that the 

second term is dominating in the solution, when we are just going for large value of t. 

And the value of coefficient for the steady state response or we can say a particular 

solution becomes very large, when you see the exciting frequency is very close to un-

damped natural frequency. Means you see here when we are very you know like when 

the system is exciting close to your natural frequency we know that the particular 

solution is really significant at that time. 
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So, this phenomena where the system is going towards your natural frequency is known 

as the resonant frequency or the resonant concept. And it plays a real good role, because 

you see at that time you know that the used amount of energy is being explode from the 

system and we can say if we can control this apart. If we know that you see this much 

use exciting vibrations are there or we can say the amplitude is there, this feature is really 

playing a vital role in the design or vibration analysis or in testing of any of the subject. 

Now, this concept we would like to apply into the numerical problem and how we can 

play with some numerical data’s. 
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So, here we have the fourth example of this chapter in which we just want to compute 

that what exactly the solution feature is, what is the generalized solution if the system is 

constrained by these boundary condition and this equation. So, we have the equation x 

double dot t means the acceleration plus 0.4 velocity x dot t plus four displacement x of t 

equals to 1 by root 2 sin 3 t. 

So, we have a clear feature of acceleration velocity displacement and 1 by square root 

square out of 2; that means, you see the initial force and sin this 3 t that is your natural 

frequency feature the forcing feature from that. The initial conditions are also given to us 

that x of t x of 0 the t equals to 0 it means a is minus 3 by root 2 and x dot 0 the initial 

velocity since you see it is a linear term, so it is 0. Now, first this you know like we 

would like to solve for particular integral or particular solution or p i you see here. 

So, for that we can simply assign we know that the forcing factor is coming from sin 3 t. 

So, certainly we have x of p the particular solution in terms of displacement is nothing 

but equals to x 1 sin 3 t plus x 2 cos 3 t. And then you see here we can simply find out 

the differential feature of this displacement; that means, you see here what exactly the 

loss d and acceleration terms are. 
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So, when you are just deriving this differentiating with the one derivative that velocity is 

x dot t is nothing but equals to 3 x 1 cos 3 t minus 3 x 2 sin 3 t. Or else even we can say 

that if we are simply applying this one to acceleration term then we have final x double 



dot p for a particular solution of t is equals to minus 9 x 1 sin 3 t minus 9 x 2 sin x 2 cos 

3 t. 

And now, you see here once you have these, now we have what, we have the 

displacement we have the velocity, we have the acceleration and if are now applying 

these both how do like all these terms towards your first main equation, which was x 

double dot t plus 0.4 x dot t plus 0.4 x t equals to this 1. If you are applying this there 

then you see we are ending up with this equation this is nothing but equals to minus 9 x 1 

minus 1.2 x 2 plus 4 x 3 minus 1 by root 2 sin 3 t. And the same you see here minus 9 x x 

1 minus 9 x 2 minus 1.2 x 1 plus 4 x 3 cos 3 t equals to 0. 

What we have done here, we have simply configured the entire equation into sin and cos 

feature. And we know that since the sin and cos features are independent, so certainly 

you see the coefficient of you know like the sin and cos are should be you know are 

supposed to be equals to 0. So, you see here we can frame these equations as minus 9 x 1 

minus 1.2 x 2 plus 4 x 3 minus 1 by root 2 equals to 0. And the similarly you see the 

second form minus 9 x 2 minus 1.2 x 1 plus 4 x 3 equals to 0 and you see we have what 

the two equations, the two unknown coefficients x 1 and x 2 and we can get you see the 

solution of these equations by simply solving the coupled feature. 
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So, what we have the final solution of a particular integral x of p is nothing but equals to 

minus 0.134 sin 3 t minus 0.032 cos of 3 t. So, this is something you see which we have 



right now in our feature that we are simply bounded the entire solution with this 

particular integral, which simply shows that there is a displacement. And the 

displacement is of this nature in which you see the excitation is there from sin three t and 

cos three t. 

Now, the natural frequency is nothing, but equals to from the first equation x double dot 

plus you see here 0.4 we can say x. So 0.4 is our k and since x double dot there is no we 

can say multiplication in terms of mass it is 1, so we have omega n is nothing but equals 

to two radian per second. And with this now we can calculate the zeta as well the zeta is 

nothing but equals to 0.4 divided by 2 omega n or else we can say it is 0.1. So, certainly 

the system is now under damped system and with this you see here we can calculate the 

damped frequency because there is a damping which is available there. 

So, damped frequency is nothing but equals to omega n the square root of 1 minus zeta 

square because zeta is here less than 1, so probably we can get 1.9, 9 radian per second. 

So, now, you have both the exciting frequency you have omega, and you have omega d 

and you have zeta. So, with this particular feature, now we can calculate the other 

features of the system equations. 
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Now, since this is under-damped system, so the complete solution is of the form of both 

the complementary function which is nothing but equals to e to the power minus you 

know like zeta omega and t into you know like the a sin omega d t plus b cos omega d t. 



And particular integral which we just get the you know like the outcome that is x 1 sin 

omega t plus x 2 cos omega t, and when you are differentiating this equation with respect 

to the time. 

You have now x dot t is nothing but equals to e to the power of minus zeta omega and t 

into omega d t A cos omega d t minus omega d B cos B sin omega d t plus; then you see 

you can further divide this equation into the differential form of your omega. So, omega 

X 1 cos omega t minus omega X 2 sin omega t minus now once you put entire thing then 

the zeta, the since it is the exponential term. So, again you see this feature will come into 

the equation. 

So, minus zeta omega n which is nothing but the coefficient of your t in the exponential 

term will come out and it is minus nothing but you see minus zeta omega n into e to the 

power minus zeta omega n t into this the same you know like the omega d t coefficients 

in terms of sin and sin and cos. Now, if you apply the boundary conditions which we 

have already formed there in the initial feature that you have x 0 and you have x dot 0. 
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When we applying this equations to their then we have this x 0 which is nothing but 

equals to you see b plus X 2 equals to this one and we can get this B as nothing but 

equals to 2.089. Similarly we can apply the same boundary condition x dot 0 which is 

nothing but equals to 0, when you are applying these things then we have the value of A 



in the second equation. The A is nothing but equals to 1 by omega d zeta omega and B 

minus omega x 1 and when we are applying this condition there we have minus 0.008. 

So, from these two boundary conditions that is why you see the boundary conditions are 

very helpful, in finding out the real feasible solution of any equations. Though you see 

the solution is bounded with particular integral or the complementary function, but the 

boundary conditions are always giving you some kind of direction, that how the system 

is really behaving under the situation. So, we can find the final solution that is nothing 

but equals to x of t is equals to e to the power minus, since you see the it is minus term 

because there is an d k is there. 

So, minus e to the power minus 0.2 t you know like we know that this zeta and omega 

and both are simply giving the multiplication of 0.2. So, we have this one and then since 

it is already there the A and B. So, A is minus 0.008, so we have 0.008 sin frequency was 

there you see the you know like omega 1.99t. So, it is 1.99t plus 2.089 that was you see 

the coefficient of B into cos of 1.99t. And then you see the previous which we have 

already calculated for particular integral minus 0.134 sin 3 t plus minus 0.032 cos 3 t. 

So, this is how you see we are dealing with this forcing factor and all other factors like 

omega and you see the zeta and all other things that how they are going to vary for a 

particular solution. So, this numerical problem is simply giving one feature that when we 

have you know like when you are just calculating some natural frequency or other 

frequency phenomena, we have to be very careful that what exactly the boundary 

conditions are, and how the system is propagating when the vibrations are being there 

under force forcing factors. Now, we are going towards the conceptual features of 2 

degree of freedom system that how the 2 degrees of freedom system is really behaving 

and how we can put the Newton's law towards you see formation of a equation of 

motion. 

So, there are various steps which are being you know like involving to analyze the 2 

degrees of freedom system under the vibrating phenomena to get the natural frequency, 

because we know that since the system is moving at two different you know like we can 

say natural coordinates or independent coordinates, certainly we have more than one 

natural frequency we have more than one mode shapes. So, to resolve these we need that 



you see whether it is under the forcing factors or what, so when it is you know like the 

restoring forces are being coming then how the spring is being deflected. 
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So, you can see that we have a general system the two springs are being simply 

constrained the two masses and both masses are at the displacement X 1 and X 2. And 

then we can see that since the springs are there they have the stiffness properties the 

spring rate you see we can say k 1 and k 2, m 1 and m 2 are the masses X 1 and X 2 are 

the displacement. With this now first of all we just want to resolve the forces when the 

springs and the masses are moving relatively. 

And when we are doing these things you can see that when the forces are being exerted 

on that, on top of that the red line is clearly showing that how the restoring forces are 

being you know like diversify towards other side. So, X 1 and X 2 since they are in this 

direction the k 1 is just going towards the main rigid frame and X 2 is going towards the 

free expansion feature. So, this is you see you know like the elastic deformation of the 

spring according to their stiffness's k 1 and k 2 and in that you see here, if we really see 

that the deflections are being there in the corresponding motion. So, in other way they 

may be in the you see the X 1 this k 1 is just going towards the free the free and X 2 is 

going towards the rigid end.  
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So, these are the two possible combinations which can be there in terms of the restoring 

forces according to their stiffness's. Or else if we just want to generally for generalize 

this thing then we have on m 1 on one side we have k 1 X 1, because the spring is well 

connected to this part and it has you see the restoring properties towards that. So, 

restoring force for this is k 1 x 1. And on other side of the m one we have the restoring 

forces, which is basically due to the relative displacement of this spring from k 1 and k 2. 



So, we have k 2 into X 2 minus X 1 and for m 2 you see here since it is a free end, so 

other side it is nothing and since they are in the balanced condition. So, in between the m 

1 and m 2 the same force k 2 into X 2 minus X 1 is applied in you know like the action 

and reaction feature according to the Newton's law, since it is a well balanced criteria 
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When we apply these conditions to get you know like this equations of motion we can 

straight away go first to m 1 mass and for m 1 mass we know that the forced balanced 

equation says that the inertia force due to the mass rotation m 1 x 1 double dot is nothing, 

but equals to minus k 1 x 1 into minus k 2 x 1 minus x 2. And with this you see here we 

can frame the equation of motion as you can see on your screen m 1 x 1 double dot plus 

k 1 plus k 2 x 1 minus k 2 x 2 is equals to 0. 

Similarly, we can apply the similar concept to mass m 2 where the forced balance is just 

with m 2 x 2 that is the inertia force and there is a restoring force which is coming out in 

between m 1 and m 2 because the spring is connected to the both the side. So, we have k 

2 into x 1 minus x 2. So, the equation is pretty simple that m 2 x 2 double dot minus k 2 

x 1 plus k 2 x 2 equals to 0. So, we have a coupled equation of second order ordinary 

differential equation and you can see that in this we have both, in the first equation we 

have a clear representation of x 1 and x 2. In second equation we have a representation of 

x 1 and x 2 so; that means, it is a coupled equation. 
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And in that you see here we can simply you know like form a state we can say steady 

space form or rather you see since we are only dealing with 2 degree of freedom. We can 

write independent with these equations as you can see on your screen m 1 x 1 double dot 

plus this and m 2 x 2 double dot plus this one. And we know that this equation is simply 

representing a simple harmonic motion where you see the input parameter and the output 

parameters are just showing the periodic solution. 

So, we can say that x one double dot is nothing, but equals to minus omega square x 1 

this is a well known theory you see because we know that when you are just taking say 

the simple harmonic motion. So, x 1 if you are saying it is a simple harmonic motion, so 

x 1 is nothing but equals to A sin omega t then x dot 1 means the velocity is nothing but 

equals to you know like omega will coming out. So, omega A cos omega t and x double 

dot the double derivative is nothing but equals to minus omega square A sin omega t 

since A sin omega t which we have already you know like consumed that it is a x 1. 

So, we can replace this x double dot is nothing but equals to minus omega square x 1 this 

is a well known feature of any sinusoidal excitation. So, we can replace this now 

acceleration x 1 double dot is equals to minus omega square x 1 and x 2 double dot is 

minus omega square x 2. And when we are keeping these things, so what we have now 

we have the equation minus m omega square x 1 plus k 1 plus k 2 you see into x 1 minus 



k 2 x 2 in first equation and when we are replacing this x 2 double dot from minus omega 

square x 2. 

So, we have minus m 2 omega square x 2 minus k 2 x 1 plus k 2 x 2. We can frame the 

simple equation with this particular omega square in the matrix form, because you see 

the two equations are there and they are representing with the same you know like 

independent coordinates x 1 and x 2. So, we have now minus omega square m 1 0 0 m 1 

0 m 2 this is my mass matrix into x 1 x 2 these are my state space feature plus. 

Now, when we are taking this right from in the first equation what we have we have k 1 

plus k 2. So, the first element in my stiffness matrix is k 1 plus k 2 then minus k 2 from 

this side and in the lower equation we have minus k 2 and k 2 in this x 1 x 2 is equals to 

0. So, in a broader manner now we can write the same equation in k minus, since it is 

you know like we have the stiffness matrix. So, k stiffness matrix minus omega square 

mass matrix into the independent coordinate x 1, x 2 that we are saying that the 

displacement the relative displacement in between the masses m 1 and m 2. 

So, we have x factor equals to 0. So, this is you see the standard equation for showing 

more than 1 degree of freedom system when you see the system is excited with the 

various degrees of freedom, this equation can be shown to 2 degree, 3 degree, 4 degree 

or any multi degree of freedom system, where we have some of the properties. 
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And this is something sometimes we are saying that this is the cross check also. So, the 

stiffness matrix k is k 1 plus k 2 in the first element, minus k 2 as the second element, 

minus k 2 on the lower side third element and k 2 as the fourth element. Mass matrix is 

m 1 0 0 m 2 mode shape, which is nothing but equals to the relative displacement of the 

masses they are simply x 1 and x 2. And when you see you know like we are calculating 

the Eigen value that is the characteristic root of the equation they are simply giving the 

natural frequency square root of this one. 
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So, first 2 degree of freedom system there must be the two natural frequencies because 

two equations are there and two masses are moving with the two stiffness's certainly we 

have the two different exciting frequencies with these terms. And then you see since the 

two natural frequencies are there every natural frequency is corresponding to the mode 

shape. So, we have two mode shapes in that case and one of the important or we can say 

the significant term in this, is the mass and it is stiffness matrices must be symmetric. 

If they are not in the symmetric way you cannot get the equilibrium feature in the any 

dynamic situation. So, this is in reverse way we are saying that this is the cross check for 

that. So, the mass matrix it is showing on your screen is m 1 0 0 m 2. So, you see the 

diagonal all the masses which are playing a critical role in formation of the equation or 

the exciting frequencies they are always coming as in the diagonal form. 
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The main diagonal element is always be positive and for any large number n degrees of 

freedom system the many numerical you know like the techniques are there; for that we 

can resolve the issues according to time integration techniques analytical formulae or 

anything even the discretized techniques as well; like infinite element finite volume 

anything like that. And in that you see what we are trying to see if you want to calculate 

this we are just saying that we just want to find that the determinant of the matrix which 

must be equals to 0. So, when we apply to this concept to any of the matrix form we have 

k minus omega square m into x equals to 0 if we want to find the solution then we need 

to go with the determinant. So, determinant k the matrix k minus omega square m equals 

to 0 or we can say the x equals to 0 the more shapes they are in the well balanced feature. 

And in this particular case now we can say that for the non trivial solution, we have the 

determinant k 1 plus k 2 minus omega square that is one term, minus k 2 was another 

term minus, k 2 was the third term in the lower. And then k 2 minus omega square m 2 

equals to 0 or else you see if we resolve this issue, we know that we have k 1 plus k 2 

minus omega square and k 2 minus omega square minus k 2 square equals to 0. 
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When we are trying to solve these equations we know that the above equation is always 

in the quadratic form. The omega to the power four in the natural way, so two natural 

frequencies are there one is omega and one which corresponds the first mass omega n 

two which corresponds to the another mass of this with this stiffness value. So, the first 

natural frequency and the second natural frequency, the nature of the natural frequency 

existing with any kind of system is like that. 



The first natural frequency must be less than or equal to second natural frequency it 

cannot be greater than that, because as it is you know like moving further we know that 

the higher order excitations are creating more exciting frequencies. And when we are 

inserting these natural frequencies into the basic equation, say one or two then we can 

simply find that the determinant k minus omega n square m equals to 0. And determinant 

k minus omega into square m equals to 0 and correspondingly we know that we can get x 

1 and x 2, because they have the linear a linearly dependent parameters on these feature. 

So, the x 1 and x 2 the relative displacement is giving some value on that. 
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So, now, if we are using this what we have first minus m omega square x 1 plus k 1 plus 

k 2 x 1 minus k x 2 that was our first equation. And if we are applying this we have x 1 

by x 2 at the first natural frequency is equals to k 1 plus k 2 minus m omega n 1 square 

divided by k 2. And similarly for the second mode means at you see here omega equals 

to omega n 2, we have this one. 

And since you see we are taking the relative displacement right now we are saying that x 

2 by x 1 that is nothing but the relative displacement of output by input is equals to 1 for 

one part and another for minus 1. So, 1 and minus 1 are just showing the phases in 

between the first and the second and in the diagram we have shown that the springs are 

the restoring forces are moving towards one direction, towards and or free part. Or in the 



other diagram also it was just you see you know like in case of repulsion. So, in both the 

case you see the displacements x 2 and x 1 are just 1 or minus 1. 
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As you can see here in this also we have seen you know like the red feature they are 

showing either in first phase they are just going in a similar phase part both are in the 

extension feature. Or in the other part you see here it is simple you see one part is going 

forward other part is just coming towards that side, so we have minus 1. So, this is first 

case is showing one feature the masses which are moving if they are in the phase they 

have plus 1 x 2 by x 1 the masses. 

When they are just in the outer phase means x 1 is just moving positive and x 2 is 

moving minus 1 we have always in the opposite phased feature and mode shape are 

nothing but as we already discussed they are the relative displacements of the bodies at 

the different frequencies. We can show these things that how you see since we have the 

two masses how we can say that they are in phase or they are out of phase. So, you can 

see that in this. 
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This first mode when we are saying that they are absolutely in the opposite phase you 

can see that both are just in you know like diagonal to each other. One is going down, 

one is going up, one is going up, one is going down in the first mode, while in the second 

mode you can see that it is they are in phase means both are coming together downward 

direction or upward direction. 

As you see these are the two masses connected to two springs they have the same 

relative movement in the second mode or in first mode irrespective of whatever it is. So, 

accordingly you see we can say that x 2 by x 1 are 1 or minus 1 according to their 

relative motion. So, 2 degrees of freedom system showing two natural frequency two 

mode shapes and both mode shapes are simply the relative displacement of their masses 

towards that. 

And two masses which are being constrained by the spring certainly we have two 

different you know like the restoring forces on that and we can show that these things 

that you see how the masses are being you know like encountered towards that. So, 

please remember that whenever we are discussing about like the more degrees of 

freedom they are simply reflecting that the masses which are being connected by the 

springs or any of the constraints they have relative displacement towards that. And say if 

you are going towards three degrees of freedom certainly we have the masses sometimes 

in phase or out phase together. 



May be you see out of three masses the two masses are in phase one mass is out of phase 

or even all three masses are in the phase in that we are saying that this is the orthogonal 

condition. So, sometimes you see when you are going towards the higher orders 

generally we are saying multi degrees of freedom system the orthogonality is one of the 

key property in the mode shapes. And we can calculate the mode shapes means, we can 

calculate the relative displacement of all the masses according to their exciting 

frequencies. And that is why you see here if we are saying 3 degrees of freedom we have 

three natural frequencies, if we have 4 degrees of freedom four natural frequencies are 

there or n degrees of freedom simply giving you the n degrees of freedom systems. 
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Now, you see here we are applying the similar kind of concept to another feature that if 

you see the end is not free if the end is even constrained there. So, you look at that what 

we have we have m 1 and m 2 these are the two masses which have the displacement the 

displacement is nothing but equals to x 1 of t and x 2 of t. These two masses have a clear 

constraints right from the beginning to the end. So, we have in the beginning the k 1 and 

c 1 the stiffness and the damping in between these two now we have k 2 and c 2 and in 

the last at the constraint feature other at the outside we have k 3 and c 3. 

So, this system is now having the three you know like the damping feature and three 

spring features the stiffness feature. And now we are applying the force to introduce x 1 

and x 2. So, for m 1 the force is which is being applied the forcing factor is f 1 t and x 1 t 



is corresponding resultant at f 2 t is being applied to m 2 and corresponding x 

displacement is x 2 t we know that under the forced excitation the system is well 

established the equilibrium feature. 

So, we can find out that you see the inertia of forces which are being generated due to the 

force application on the masses m 1 x 1 double dot is nothing but equals to f 1, which is 

being applied x 1 by t. This is one part means you see what you have you have 

displacement x 1 t you have displacement x 2 t and then you see you have the velocity 

component x 1 t and x 2 t because the damping is there. So, velocity is also one of the 

important feature in dissipation of the energy as the viscosity it is there. 

So, please remember that if the system is simply a mass and a spring the displacement is 

enough to find out the characteristics features of the system, but when you have the 

damping involved there. Then we need to check that how the frequencies are being 

affected by this damping due to this dissipation of energy; that means, in other way we 

need to consider the displacement and the velocity together. So, we have you know like 

right now the system is integrated with the spring and the damping here. So, we can say 

that it is f 1 x 1 t x 2 t x 1 dot t x 2 dot t and the t because the time is the because it is a 

dynamic features, so we have the time, so this is for the first mass. 
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We can apply the similar things to our another mass m 2 x 2 dot which is nothing but 

equals to f 2 or we can say you know like this particular function of x 2 t x 1 t and then x 



1 dot t and x 2 dot t. So, this is you see either the inertia force at first mass inertia force at 

another mass certainly you see this is a function of both the displacement and the 

velocity component together. 

And now you see if you are applying the balanced condition there itself then what we 

have we have f 1 t, f 1 which is you know like the forcing factor there on the first mass is 

nothing but equals to minus k 1 x 1 t, because you see the restoring forces which is just 

coming out from the base. So, minus x 1 you see here is the displacement and k 1 is 

multiplication. So, restoring force minus k 2 x 2 and you see when we are talking about 

the k 2 this k 2 is in between the displacement x 1 and x 2. 

So, certainly we have the relative displacement, so this k 2 is influenced by x 1 t minus x 

2 t. Then you see a if you are going towards the viscous damping again you will find that 

from the base end the c 1 into x 1 dot t; that means, you see we have c 1 velocity minus c 

2, because you see the c 2 is also coming in between the two different displacement x 1 

and x 2. 

So, certainly you see there is a velocity difference which is coming out and which or else 

you see which has you know like direct influence on the damping forces formulation for 

the first mass balanced feature. So, you see we can say it is c 2 into x 1 dot minus x 2 dot 

in that and plus you see here whatever you see the forces which are being applied to the 

system f 1 t. 

So, this is the total force which is being there and we can simply formulate the equation 

of motion for the first mass similarly we can go to the another force that is f 2 on the 

another mass. So, what we have see straightway we can go to the k 2, so k 2 since it is 

coming in between x 1 and x 2 in the previous figure. So, k 2 into x 1 t you know like 

minus x 2 t that is a relative displacement feature and then you see we can say that minus 

now we have the k 3, k 3 is nothing but the spring stiffness which is just you see on the 

extreme side of mass m 2. 

So, since this is coming as the independent coordinate of your x 2. So, we have minus k 

3 x 2. Similarly, we can say that when we are simply playing with this c 2 which is in 

between you see your x 1 and x 2. So, certainly the velocity differences are being there 

as x 1 dot minus x 2 dot and then you see c 3 which is you know like the extreme end 

your damping feature. So, c 3 into x 2 is your damping force at the extreme end plus 



whatever the force which is being applied to mass. So, when we apply these equations 

both f 1 and f 2 equations the balanced equation then what we have, we have the 

equation of motion like that. 
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So, equation of motion is m x double dot the inertia forces for first displacement second 

we have the damping forces c 1 x 1 dot plus c 2 x 1 dot minus x 2 dot. So, this is the total 

damping forces which is being straight way applied to both the side of the mass just to 

make the balance or the energy dissipation, plus you have the springs; since this mass m 

one is connected by both the side spring one is k 1 and one is k 2. So, k 1 is affected by x 

1 and k 2 affected by x 1 minus x 2. 

And when we are doing these things then it is equals to whatever the force which is 

being applied to the system external force. So, this is the well balanced equation from the 

Newton's law and we can say that we can apply the similar kind of situation to our 

another equation of motion m 2 x 2 dot is you see into c 2 x 1 x 1 dot minus x 2 dot plus 

c 3 x 2 dot. So, again you see here this is the total damping of the mass m 2 on left hand 

side we have relative displacement x 2 and x 1 and x 2. So, you see the velocity 

component is coming in formation of damping force on left hand side in x 3 x 1 and x 2 

and on other side we have x 3 dot which is nothing but you see since it is a independent 

coordinate with the c 3. So, we can calculate this x 2 dot into c 3. 



And similarly, you see for restoring forces on the left hand side of m 2 we have relative 

displacement between x 1 and x 2 on other side on right hand side of mass m 2 we have a 

independent coordinate of x 2. So, we can calculate you see the k 2 and the k 3 formation 

accordingly the restoring forces and then you see the f 2 which is being applied force on 

the mass m 2. 

So, these two equation of motion is simply shows that how you see the damping 

restoring forces and you see the inertia forces are being well balanced even when it is 

being applied by external force f 1 or f 2 on m 1 and m 2 masses then you see again we 

need to if you want to solve this then again we need to apply the same that you see since 

these forces which are being applied to the system they are harmonical forces. 

So, we can simply assume that even f 1 is nothing but equals to f 0 sin omega t f 2 which 

is nothing but equals to f 0 sin omega t in other way and then you see you have the two 

forcing factors the entire system is under periodically exciting free figure. Or we can say 

simple harmonic motion you can apply you see same that x 1 since you see you have the 

2 degrees of freedom system with the x 1 and x 2 displacement you can say x 1 double 

dot is nothing but equals to minus omega square x 1 x 2 double dot is nothing but equals 

to minus omega square x 2. 

And when we are applying these conditions we can frame the same equation as the 

matrix k in this particular feature matrix now we have the more number of elements 

because what we have since you see it is a 2 degrees of freedom system, but there is a 

clear interaction of three springs. So, we have you see in our elements we have k 1, k 2, k 

3 interacting together and in the same you see we have the damping figures. 

So, now there is a damping features which will come out because now the system is also 

exciting with this particular phenomena. So, we have what we have un-damped natural 

frequencies and the damped natural frequencies we can simply calculate that whether the 

system is under damped critically damped or over damped. And accordingly you see we 

can frame the equations then itself for the solution and then we can find out that what is 

my outcome is there. 

So, x 0 or you see here x 2 by x 1 according to the mode shapes. So, in simple way that 

simply you know it is like 2 degrees of freedom system we can resolve all these issues by 

assuming the simple harmonic motion input excitation and output feature x 0 in the 



simple harmonic motion. So, the frequency response functions can be calculated mode 

shapes can be calculated or the natural frequency can be simply you know like obtained 

using these equations omega n 1 and omega n 2. 

So, matrix and vector notations can be incorporated into these equations which is useful 

for you know like generalizing an arbitrary numbers of degrees of freedom. So, we can 

use the similar kind of steps to solve even the n degrees of freedom system. So, in 

today’s lecture most of our discussion was you know like that if the system is under 

forcing factor or the system is of 2 degrees of freedom. Then how we can resolve the two 

degrees means the two coupled equation, how we can give the input features of the 

simple harmonic motion or how the boundary conditions or the initial conditions are 

being straight away applied to get the final numerical solution. 

In our next lecture now we are going to discuss because you see till now you see we 

were discussing about this 2 degrees of freedom. So, we would like to now finish up to 

we will go up to certain higher degrees and we just want to see that how the forcing 

factor the free and forced vibrations are there for more than 2 degrees of freedom 

generally we are saying that the multi degrees of freedom because as we know that the 

theme of this course is basically the vibration control. 

So, control should be applied at the main exciting frequencies. So, from these you see 

you could figure out easily that how you know like the exciting features are being taken 

place at the system which part is exciting you know like more; or what exactly you see 

you know like their phases when all the masses are being you know like under the 

exciting frequencies. 

Thank you. 


