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We will continue with our discussion on compressible flows. We will now discuss on something

know as stagnation properties. 
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This terms stagnation we have come across during our earlier topic that we have covered in fluid

mechanics and one of the literal meaning is that the fluid is brought to rest starter point, so that

the velocity is 0. So stagnation point is a point where the velocity of the fluid is 0. But that does

not mean that its suppress the requirement of description of stagnation properties. So, we will

now look into more deeply about some of the important properties which dictate the nature of the

process by which the stagnation state is touching. 

To that we will refer to first an important thermodynamic property and when we are referring to

the thermodynamic property, we would be basically referring to the first law of thermodynamics

to specify that. So, if we say that you have control volume, say some control volume which has

some inlet i and some exit e. Let us say, that there is some rate of heat transfer to the control

volume Q dot cv and some of the work done by the control volume as W dot cv.



And let  us say that the flow is steady and the state or the properties of fluid within control

volume is steady that means the property within the control volume do not change with time. So,

if these 2 conditions are simultaneously achieved then the corresponding form of the first law of

the thermodynamics is like this. Where h is the property in enthalpy, which is the internal energy

plus pressure by the density. 

Now, this  particular  form is  also  known as  steady  flow energy  equation.  Just  for  common

understanding. So this is nothing, but first law of thermodynamics expressed for a flow process

across the control volume. When, the flow is steady and the state within the control volumes also

steady.
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Not only that there is certain more important assumption, what are the important assumption? All

the properties at the inlet and exit are uniform that is the velocities profiles are at uniform, the

thermodynamics  properties  like  enthalpy  those  are  uniform.  So  it  is  like  approximately  1-

dimension representation where uniform properties  across the cross section for the inlet  and

outlet. Now we are interested to apply this equation for compressible flows.

So, when we apply this equation for compressible flow first of all if you have system were you

are not having mechanism of extracting work from that, so then this rate of work done will be 0



by the control volume. Then, if what kind of process we are considering. We are considering

adiabatic process. If it is an adiabatic process, so if it is an adiabatic process that means the heat

transfer across the control volume is 0.

We are not commuting, whether it is reversible or irreversible,  so reversible to irreversibility

features when we talk about second law of thermodynamics. When we discuss about that, but in

the first law of thermodynamics it is just good enough to say whether it is adiabatic or not, it is

reversible or irreversible does not feature here. Now in most of the high speed gas flows the

effects of thermal effects and kinetic energy effects are more important than changes in potential

energy that is negligible and therefore your left with h i+u2 i=h e+u2 e. Okay?

Now, let us say that we are thinking about 2 sections instead of i and e. Some genetic section

where the enthalpy this is specific enthalpy that is enthalpy per unit mass is h, the velocity u this

is at some section and when you go to some another section that section is special section when

the velocity is brought to 0. So this is section of stagnation. So we are interested to see that what

a corresponding enthalpy there is and let us say that the name enthalpy at that stagnation section

is h0. 

Since it is a one dimensional treatment section and point are same. That it is basically uniform,

so we can say from here that h+u 2/2=h0, because at the stagnation u=0. So this h0 know as

stagnation enthalpy. For an ideal gas it is know that dh=C pdt this is for an ideal gas where Cp is

functional  of temperature  in  general  what  when you will  talk  about  the perfect  gas  Cp is  a

constant. So if you say a perfect gas it is constant for perfect gas. 

Therefore,  we  may  say  h-h0.  For  perfect  gas  is  Cp(T-T0),  where  T0  is  the  temperature

corresponding to the stagnation enthalpy this is known as stagnation temperature, while we refer

to the temperature because temperature is a direct measureable quantity from experiments. So it

is important that we refer to that. So this known as stagnation temperature. So we can write Cp

(T-T0) +u square/2=0. Okay?



Now we may write Cp in terms of R and gamma, because just we call that Cp-C0=R and Cp/Cv

= gamma. Okay? So we can write Cp1-1/gamma=R that means Cp = gamma R/gamma-1. So we

can write T o - T in place of Cp we write gamma R/gamma-1=U square/2. U square/2 is what

you can write U/C=Mac number say M. So U square=M square*C square.

Now what will be expression for C will depend on the nature of the process, if it is an isentropic

flow C square is gamma at T. So this is=M square*gamma at T for isentropic flow. See till now

where ever we define the stagnation temperature so the stagnation temperature how it is defined.

The Stagnation temperature is defined from this equation as T0=T+U square/2Cp, Right?
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This definition does not require to process to be reversible. So if you want to find out what is

stagnation temperature, infect this definition does not require any process because it is just an

expression. So if you know the temperature and velocity at a point and specific heat at a point

you know the stagnation temperature at a point. So Stagnation temperature is defined at a point

irrespective of what is. I mean what kind of state is there at the point.

If you want to physical achieve stagnation temperature, you have to bring the process to rest at a

point  in  an  adiabatic  manner.  It  need  not  be  reversible.  That  is  not  necessary;  because  the

definition  followed  from the  first  law thermodynamics  by  setting  heat  transfer  =  0  without



imposing  any  condition  of  reversible  process.  Okay. So  keep  one  thing  in  mind  stagnation

temperature just like any stagnation property is a property.

So it does not mean that at one point. If it is not a stagnation point it will not have stagnation

temperature  it  will  have  stagnation  temperature,  because  it  is  just  dependent  on  the  local

temperature,  velocity  and  Cp.  So  it  is  just  like  a  combination  of  properties,  therefore  it  is

property. If you say that, I want to physically achieve that property then you have to follow this

kind of process adiabatic process.

Now if you want to use this expression U square=M square * gamma at T that means now you

are imposing additional constrain that it  is an isentropic process that means it  is a reversible

process for an isentropic process this will be M square gamma RT/2. So from this what follows is

gamma, so into R will cancel  from both sides, so we will  get T0/T=1+gamma-1/2M square,

Right?

This is the relationship between the stagnation temperature and the temperature at a point. What

are the assumptions under which this is valid it is an isentropic process that you have to keep in

mind, otherwise the more general expression is this one. Now you may relate the stagnation just

like stagnation temperature you may have a stagnation pressure and stagnation density.
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So those properties also you may find out, so for an isentropic flow. For isentropic process you

have T p to the power gamma=constant, that means basically in terms of T and P you can write

T2/T1=P2/P1  to  the  power  gamma-1/gamma.  So  just  like  you  have  related  the  stagnation

temperatures,  similarly  you  can  relate  stagnation  pressure  P0/P=T0/T  to  the  power

gamma/gamma-1 that means 1+gamma-1/2M square to the power gamma/gamma-1. Okay?
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This is this P0 stagnation pressure remember assumption again is isentropic flow. Now so this

considers compressibility, we have earlier  seen a case. Where we used Bernoulli  equation to

define a stagnation pressure and that was without consideration of any compressibility. So we

use just a Bernoulli equation. Bernoulli equation means it is a incompressible flow assumption

and the stagnation pressure.

So if  you consider  incompressible  limit  P0=P+1/2Pu square,  neglecting  the potential  energy

effect. What are the assumptions? it is an incompressible flow, we use the Bernoulli equations

that  means  we  implicitly  assume  that,  it  is  a  frictionless  flow.  So  if  you  want  to  achieve

physically this P0 you have to bring the fluid to rest in a reversible adiabatic process that will

mean it is a frictionless process.

If you want to achieve P0 physically you have to bring the fluid to rest in a adiabatic process, it

need not to be reversible. Where as to achieve P0 physically? You to bring to rest by ensuring



both that it is reversible and as always as adiabatic. This is very important distinction between

like how you achieve physically stagnation pressure and stagnation temperature.

So, now when you come to this incompressible flow here you can write P0/P. For an ideal gas

P/rho1/2T.  So  this  is  1+1/2u  square/1/2T.  Remember  that,  if  it  is  an  isentropic  flow  C

square=gamma1/2T. So this you can write 1+gamma/2U square/C square=M square. Okay? So,

this is an expression which is valid for incompressible flow this is an expression that is valid for

compressible flow.

It  may be interesting to see that in a certain approximately limit  this to equations in certain

approximation  they agree with each other  to  do that,  what  we may do this  is  more general

expression. So we may expand this binomial theorem, just like 1+X to the power of n. So, if we

expand that  in  a binomial  theorem. So P0/P, compression so 1+X to codeine is  1+nX+n*n-

1/factorial 2*X square+.

Let us just write another term n*n-1*n-2/factorial 3*X cube like that. So this is 1+gamma/2M

square, so you can see that up to the first term it is just like an incompressible flow expression

that the remaining term and the correction because of the compressibility effect. So, what are the

corrections? You can write may be the first 2 corrections, so one is gamma-, so this is gamma/8M

4, Right?
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Then + this is 2 + gamma * gamma/48 * the power 6 like that. Sorry, 2-gamma, right? So what it

is important implication say, you are using a P dot U to measure flow velocity at a point and your

negligent of the compressibility effect and your using this expression for P0/P. Because in a P dot

U, you may get the difference between stagnation and static pressure by connecting a manometer

between the stagnation point and another point which is point locator upstream to that.

So when you get that expression that expression will require a correction and leading on term

that will  dictate  correction.  The first  2 leading on term are like this.  So, if  it  as to have the

compressibility effect this extra term call correction needs to be invoke and we can see this.

These terms are higher powers of M. So as M become smaller and smaller this become more and

more irrelevant. That means for no values of Mac number the compressibility effects are smaller

and smaller that is quiet intuitive.

Next what we will consider? Next, we will consider the similar thing that we have discussed till

now may be isentropic begin with, but through a variable area ducts. Till now we are not taken

area  as variable  parameter, but  now let  us generalize  the pervious  discussion somewhat and

consider isentropic flow through a variable area ducts. So when we say variable area ducts may

be it is something this, maybe it is something like this we will not specify what it is but the area

of cross section will vary.



So what are basic equations that we may use here? One is of course continuity equation and in all

cases  we are assuming it  is  a one dimensional  flow. So rho*A*U=constant  this  is  from the

continuity  equation.  Then  the  fluid  flow  equations  here  remember,  we  are  talking  about

isentropic flow. So reversible and adiabatic, so it is having no friction that means it is a inviscid

flow.

So what  will  be  governing  equation  for  that  Euler  equation  1-dimension  form of  the  Euler

equation? So Euler equation, so that is what dp/rho + UdU=0?, that is a differential form of the

Euler  equation.  Remember  that  in  all  cases  of  compressible  flow that  we are discussing we

neglecting the changes in potential energy. Gravity effects are negligible compared to the other

effects,  so this  sort  of like the fluid  flow equations  and the thermodynamic  constrain is  the

energy equation.

So energy equation is like h+U square/2=constant.  But,  first of all  we will  not consider this

energy equation as an important consideration. But, we will concentrate on these 2 equations and

see what we will get out of that. So continuity equation rho*A*U = constant. So what we will do

is we will take log on both sides so we will ln rho+ ln A+ln U=ln constant and then differentiate

that means d rho/rho + dA/A + dU/U=0, say this is equation number 1 and say this is equation

number 2.

Now, if want to relate this with sonic speed see equation number 1 there is d rho in Equation 2

there is dp, so somehow we find out dp d rho, that will give C square. So we can relate this

behavior with sonic speed, so we can we write from 2 that dp=-rho U dU and or if you want to

relate with it U square. So dp/U square=-rho U d U/U square. So, - rho d U/U. Why we are

written in this form?

Is because you have another d U/U in equation 1, so let us say that this is 3 and from equation 1

you have d rho=-rho*dA/A + dU/U say this is equation 4. So, if you divide equation 2/equation

sorry equation 3/equation 4. You get dp d rho*1/U square=d U/U/dA + dU /U. If consider as an

isentropic flow dP d rho=C square. So, for an isentropic flow the left and side is 1/M square

because M=UYC.



So, from you can write dA/A+dU/U=M square dU/U. Which means dA/A=1- or =M square-

1*dU/U, this is relationship is that govern the change in area which change in velocity and it is

one of the very important physical relationship which we have to carefully study. So if you write

d A by A so when you write d A/A, we think about 2 possibilities.
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One  of  the  possibilities  is  along  the  deduction  of  the  flow,  the  area  increasing  or  area  is

decreasing this is an example with dA/A>0, this is an example with dA/A<0. Assuming, that to

be the deduction of flow. Okay? Now if you consider M=1 as case so M=1, if you consider that

will imply what dA/A=0, right? That means if you want to achieve M=1. M=1 is called as a

sonic condition.  In an isentropic flow it  must confirm to dA/A=0. dA/A=0, if you look into

mathematically it may be either maximum area or minimum area, Right?

Physically, we will see it is confirmed to the minimum area, so if you consider possibility of this

2 types  say you consider  as this  are  the case.  Let  us  say that  you have the inlet  flow with

particular Mac number whatever the Mac number at the inlet may be > 1 or may be < 1. Now, we

interest to see the consequence. If you consider this particular geometry, if you see that no matter

where ever M=1 is achieved we will see later on with the physical example that how M=1 may

be achieved.



See just think this geometry, so this particular geometry even, if it is an incompressible flow you

what is your target. The target could be to increase the velocity that is, why? You reduced the

area of cross section, so this type of thing where you have variable cross section area with the

intension of increasing the velocity and, therefore consequence reduction of pressure that is now

as a nozzle.

So, if you have a nozzle your target is to have an increase in velocity. But just this geometry does

not  ensure  that  will  be  like  that  for  a  compressible  flow  for  an  incompressible  flow  area

reduction will imply velocity will increase. For compressible flow, you think it like that it may be

wrong because rho is also another factor its rho*A*V, not just A*V. So rho may vary in such way

it might that area is increasing the velocity also increasing, so it all depends on the Mac number

at which the fluid is there.

 So we will see later on that. What is physical implication of the minimum area, when we discuss

more  about  nozzle?  Converging  nozzle  this  is  called  as  converging  nozzle  or  converging

diverging nozzle. But look it in the other way if M is != 1 then can you have dA/A=0 definitely

M is != 1. Then you may have dA by A =0 then dU by U = 0 that means U is either are minimum

or a maximum.

So, from this we come to a very important conclusion that if for the time being we take that at

the minimum area M=1 is achieved that does not mean that at minimum area M=1 is always

achieved it means that M=1 is achieved. Somewhere it has to be minimum area location, but the

minimum area location will not always have M=1, if it does not have M=1 it will have either a

minimum name or maximum name.

And we will that see how it is possible to understand that what we will do his we will consider to

different cases one is M>1 and another one is M<1. If you consider M>1, you can see that if you

have a reduction in A that means dA/A reducing. Then dU/U that is also reducing, Right? That

means,  if  area  decreases  the  velocity  also  decreases,  if  the  flow  supersonic  this  nonentity.

Incompressible flow consideration, we say, if area increases the velocity will decrease so why it

happens roughly if you see that what you are keeping fixed rho * A * U.



So your reducing A, your expecting U to increase but with reduction in A maybe there is, such a

high increase in density that there is actually significant reduction in U to keep the product as

constant. Okay? That what is happening here physically? So what we get of this is M >1 that

means you have dA/A. That is area is reducing then the velocity is reducing, therefore it is not

acting like a nozzle.

It looks like a nozzle, but it is acting like a diffuser. Diffuser is a something, where do want

decrease in velocity and an increase in pressure. So here it is acting like a diffuser, so physically

looking like nozzle does not mean it is a nozzle one as to see the Mac number range which it is

operating. On the other hand, if M<1 you have dA/A will be, if it decreases that will mean that

dU/U is positive that means U increases, Right?

So, if so this situation we may intuitively think as physically analogous to the incompressible

flow behavior  in  a  nozzle.  Only  if  Mac number<1,  only  if  it  is  a  subsonic  flow, if  it  is  a

supersonic flow that is not the case. So, if it is a subsonic flow what happens, if it is a subsonic

flow. So, now think about such an arrangement, so this is arrangement where the area is reducing

it comes to the minimum and then increases. So this kind of an arrangement, if you say you plot

-- So, let us say that the arrangement is like this we plot the Mac number verses X for 2 cases.

Assuming isentropic flow for 2 cases one is entry Mac number>1, another entry Mac number<1.

So, if inlet Mac number<1.So this Mac number=1 inlet Mac number is 1/2 like this. So as you go

through the converging section the velocity will increase, the Mac number will increase. So the

Mac number will increase and it will and it come to a maximum when dA/A=0. Okay?

So it may not achieve one but it will come to a maximum and then, it will fall because the area of

variation is difference. On the other hand, if the inlet Mac number >1, then the velocity will

reduce  in  the  converging section.  Therefore,  the  Mac number  will  reduce  it  will  come to  a

minimum, therefore here and then, will increase again. So if the increase is supersonic the throat

may have the minimum Mac number.



If the increase subsonic the throat may have the maximum Mac number, but this are limited by

Mac number=1. So, if it is supersonic it remaining supersonic for all the locations. It is coming

only to minimum, here that is >1. On other if it is subsonic, it remaining subsonic everywhere at

the throat, it is coming to the maximum. But still greater less then Mac number 1. So, from this,

we conclude the very important thing. 

It is not necessary that at the throat this location of minimum area called as throat. That at the

location of the minimum area, it is not necessary that we always have the Mac number=1. But

the converse is true, if we have at some location the Mac number=1, that must be at the throat.

Okay? Again remember, there are many important assumptions associated with it. Assumption is

isentropic flow, if it is a flow with friction and flow with heat transfer. 

Then the location of this sonic point Mac number=1, shifts it is no more at the throat. It is at

either the upstream or downstream depending on the heat transfer in the flow and friction in the

flow. Okay? Now it  is also possible to write the expression of dA/A, exclusively in term of

dM/M. So,  let  us  try  to  do  that  because  it  will  give  as  exclusive  variation  of  or  exclusive

relationship between Mac number and the area.

So, let us write say d. So, we know that the Mac number=CU. We are interest to express dU/U in

some way in terms of dM/M. So, that we write dA/A explicitly in terms of dM/M. Sorry? U=CM

right now, what you may do is? You may take log on both side and then differentiate. See, if for

all  this  cases  by  this  time  you  have  released,  that  there  purpose  in  taking  the  log  and

differentiating, because you are getting this type of expression dA/A dU/U by like this. 

Taking log and differentiating, there is other ways of getting it this is the easiest way of getting

such  forms.  So,  logU=logC  +  logM  and  then  you  differentiate.  So  you  will  get

dU/U=dC/C+dM/M. So, in an effects of expressing dU/U in terms dM/M. We are come up with

new unknown dC/C. But C may be expressed in terms of the temperatures. So, let us give the

equations some numbers, let say this is equation number 5 and say this is equation number 6.

Now we know that for an isentropic flow.



See we writing all this equation for an isentropic flow C=root over gamma at T for an isentropic

flow. Again, we take log. logC=1/2log gamma+1/2log R+1/2log T, that means dC/C=1/2dT/T, so

dC/C=1/2dT/T. Therefore, you can write from equation 6. That dU/U=1/2dT/T+dM/M. Again,

another new unknown dT/T as appear. But, till now we are not used the energy equation. That we

may use so energy equation, what it was h+U square/2=constant? That was an energy equation.

So, you have dh + UdU=0, and for a perfect gas this is C pdT + dU=0, in place of C p, we can

write gamma R/gamma-1. If you want it write in terms of dU/U, just divide both terms by U

square. At U square=M square*gamma at T. So this is M Square gamma at T, so gamma R gets

cancelled. So 1/gamma-1 M square dT/T + dU/U=0. So, we have been successful in writing dT/T

in terms dU/U, so from this, we get dT/T = -Gamma-M square *dU/U, so this is 9.

So, if you combine 8 and 9 this is dU/U dT/T is written in terms of this 1/2 of this is 1/2 of the

righted side and so that will become 1+gamma-1/2 M square dU/U=dM/M, Right? So that. We

may substitute in equation number 5. Which is there to get dA/A=M square-1*in place of dU/U,

we may write dM/M. So, from this equation, we may get explicit relationship between the area

and the Mac number.

So you know, how area vary with X? You can easily get how the Mac number varies with X. So

a given geometry A as the function of X, you will get output a Mac number as function of X and

from,  here  you  can  clearly  verify  the  statement  that,  we  had  made  so  M>1.  See  that  the

denominator always positive, because gamma is Cp/Cv, Cp>Cv always. So this is positive M

square is positive denominator is positive numerator is dictating the sign.

If M >1, dA/A is positive means dM/M is positive and if M<1 dA/A is negative means dM/M is

positive. Okay? So, whatever statement in terms of dU/U, similar logic holds for dM/M, hence

this plots you verify the nature of this plots. Okay? Now other consideration regarding this types

of flows is the achievement of sonic condition. So we have given some emphasis, on that we

have and then, we have seen sonic condition at all as to be achieved that is achieved at the

location dA/A=0.
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Although at dA/A=0, sonic condition need not necessary to be achieved. If is achieved at all

achieved there. Now when the sonic condition is achieved the sonic states this usually given by

quantity '*' in the description of the flow this is just a symbolic way of representing. So if at the

state sonic condition is achieved. Let us say that a corresponding velocity is U we call it U *,

corresponding pressure P v we call it as P *, corresponding density as rho *, corresponding area

as A * like that.

The  star  quantities  are  important  because,  these  are  some  important  reference  quantities.

Remember  that  there may be cases when no sonic conditions  is  achieved at  all  look at  this

example, either the top curve or the bottom curve sonic condition achieved no were in the flow.

So  still  U*,  rho*,  P*,  A*.  These  quantities  exist  because  these  are  hypothetical  reference

condition for example A* is, what A*? Is at a given condition, what could have been an area at

which sonic condition would have been achieved not that the area is physically there in the flow.
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So corresponding  to  each  state  there  is  corresponding  '*'  quantity  and,  if  you see  tables  of

properties of compressible flow this '*' properties are there. So this are very important referral

quantities not that this values have to exist in the particular flow condition but this is referral

quantity with respect to which other quantities may be expressed. For example, if you have say a

condition where the sonic state is achieved then you may write rho*A*U=rho *, A *, U *. Okay.

So, this is hypothetical condition, if the sonic state is achieved, it may be achieved in reality. It

may not achieve in reality. Then, still it should satisfy the mass conservation. Okay? So you may

write has A/A * as rho */rho*U */U. Remember that U = M * square root of gamma RT, Right?

For an isentropic flow, when it is U *, it  is square root of gamma RT *, because M *=1. '*'

condition is sonic condition.

So, when you write star that means the Mac number at that state is 1. Okay. So this may be

written as rho*U */U=root over T*/T*1/M, Right? How you can write T* / T? We may use the

stagnation properties; we may use the reference with respect to stagnation properties. We had

T0/T=1  +  gamma-1/2M  square.  We just  now  derived  this  if  it  is  a  stagnation  properties

remember that, when it is an isentropic flow the stagnation does not change. 

Why? For example, stagnation temperature does not change for an isentropic flow, why it does

not  change for  isentropic  flow? See  consider  the  energy equation  h + U square/2,  this  is  a



constant and this is=h0. So, what where may be, its h varies U also varies in such way that some

this=constant. Therefore, h0 it is a constant h=C p=T, for a perfect gas that it is, why? To remains

the  constant  infect  it  is  not  necessary  that  is  has  to  be  isentropic  just  for  adiabatic  flow

T0=constant, because revisable condition never used here.

But, when you use this relationship it uses isentropic condition also because it uses T/rho to the

power  gamma=constant,  for  sonic  speed  derivation  from  which  this  expression  comes.  So

T0=constant, that means you can write T0/T*, as what? What is T0/T*1+gamma-1/2? that is

gamma+1/2,  so  you  can  write  T*/T/dividing  this  2  expression  T*/T=1+gamma-1/2M

square/gamma+1/2, Right?

Also, we know that T/rho to the power gamma-1=constant, for an isentropic flow, so you can

write T/Rho to the power gamma-1=T */rho * to the power gamma-1. So rho */rho=T */T to the

power 1/gamma-1. So A/A *, so you have T */T to the power 1/gamma-1*T */T to the power

1/2+gamma-1. So 1/2+, Sorry? 1/gamma-1, so gamma+1/gamma-1, Right? So this T */T to the

power of gamma+1/gamma-1/M.

That means you have A/A*, sorry, one 1/2 is there to the power gamma+1/2*gamma-1*1/M.

Right? So, what it tells is that given value of M you can get one A/A *, looking from the other

angel given a one A/A*, you could have some value of M, but it is not a unique value of M you

could multiple value of M that is very clear from this that is, because it is an equation having

multiple roots.

So it will basically 2 acceptable value of M and if look into the tables of properties compressible

flows usually these quantities are referenced for each Mac number certain important are given so

you look isentropic flow table which in the next class we will look more carefully. So, if you

have the isentropic flow important properties what are the important properties of for each Mac

number? You can P/P0 T/T0 rho/rho 0 and A/A *.
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It is important to tabulate this because, if you know the Mac number, you can calculate all others,

but if it is reverse problem, that is, if you know A/A *. Calculate what is Mac number all those

multiple roots? You may have to solve nonlinear equations, but if you have a tabulated set of data

you can just read from the table and that is, why? Compressible flow tables are there with every

book in the chapters of compressible flow corresponding there will be an appendix where these

properties are there.
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So, these properties will relate everything with reference '*' the reference either the stagnation

state or the sonic important thing is that stagnation state is the same so long as it is isentropic



flow if the isentropic nature of the flow is disturbed then the stagnation properties changes that

means T0 is same so long as it is an isentropic, but if a isentropic nature is changed.

If  is  no  more  isentropic  then  the  stagnation  properties  changed  and  one  of  the  important

mechanism that  can  create  some abrupt  change  stagnation  properties  that  is  a  shock this  is

presence of a shock wave. So in our next class we will see that how these properties get changed

when you have abrupt discontinuity in a compressible medium represent in the form of the shock

waves o that will take in a next class.


