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Lecture – 48
Principles of Similarity and Dimensional Analysis

In this lecture, we will discuss on the topic of principles of similarity and dimensional analysis.

Let us first get a background on motivation of studying this topic. Let us say that we are trying to

have an idea of how to design an aircraft and we know that if you want to design an aircraft, you

want to have a clear idea of the lift and the drag forces as some of the fundamental entities to

design it for the real system.

At the same time, we know that it is somewhat prohibitive to have many many experiments on

aircrafts of real sizes. So if you aircraft of a real size and if you want to test it, it is not only very

expensive but also there are many other drawbacks associated with such experiment.  So one

might be interested to have a reduced model that is a model of aircraft of may be a reduced size

and then test it in a wind tunnel.

So in a wind tunnel, say keep the aircraft model and have a control flow of air, relative velocity

between the aircraft and the air and then from that if you measure the pressure distribution, you

may also measure other parameters, say velocity distribution and so on and you will get a clear

picture of what is the flow around the aircraft. The question is can you extrapolate this to the

behaviour of the real aircraft, that is a very big question.

So the first question that you would like to answer is that given a study on the basis of a model of

a different size, how or whether you can extrapolate the results of those experiments to predict

what is going to happen in reality in the real situation. Then in a real situation whatever is the

entity that is being used that is considered to be a prototype and the model is a version of a

prototype, a scaled version of the prototype.

In this example, the model is smaller than the prototype. It is obvious because if you have a real



aircraft that is quite large, you want to reduce its size. It is not always true that models have to be

smaller than the prototype. Sometimes the prototype itself may be inconveniently small and you

might want to have a model a bit larger than that. Question will be that whether that scaling will

affect your results or not, that is one of the important things that you want to answer and if the

scaling does not affect your prediction.

Then the next question comes that how can you utilise the results from the experiment with a

model to predict what is going to be for the prototype, that is the first questions. The second

question  is  let  us  say  that  you  are  doing  experiments  with  a  model,  you  may  have  many

parameters which are influencing the results of your analysis or the results of your experiment.

Now how could reduce the number of parameters to a few but more effective ones, may be more

effective non-dimensional parameters.

Why non-dimensional parameters are important? Because sometimes you may parameterise the

result as a sole function of certain non-dimensional parameters. So as an example if you have say

flow through a pipe, you may have many experiments with different lengths, different diameters,

or maybe different densities of fluid, different viscosities of fluid but if you parameterise the

result in terms of Reynolds number, then if you keep the combinations of these such that the

Reynolds number is unaltered, the physical behaviour is unaltered.

That means we in such a case may reduce the parameters from say 4 parameters to an equivalent

single non-dimensional parameter. So the big exercise or the big understanding is how can we

make the parameterisation of the experiments in terms of the reduced number of parameters

using certain non-dimensional parameters. So these are the important questions that we would

like to answer through the study of principles of similarity and dimensional analysis.

Now when we say similarity, what kind of similarity we look for? The most intuitive form of

term of similarity that appeals to us is a geometric similarity. So whenever we first studied about

similarity in high school, we only studied about geometric similarity. So if you have a figure and

another figure which is geometrically similar, you have basically ratios of the equivalent sides as

identical or equivalents lengths are identical.



So basically then you have a similarity in the length scales, that is what we essentially found for

geometric similarity. So geometric similarity is something which is intuitive, that is if you want

to study the flow past in aircraft, you may make it small but geometrically would always like to

make it similar in terms of the actual big aircraft.

(Refer Slide Time: 05:44)

So when we talk about similarity and the nature of similarities, the first similarity that would

come to our mind is geometric similarity, okay and geometric similarity is the similarity in the

geometry as obvious as that. There is nothing more important. The next type of similarly that we

look for is known as kinematic similarity. So kinematic similarity again from the name it is clear,

it is similarity of motion.

(Refer Slide Time: 06:29)



So maybe what it means is that if you have say 2 points P1 and P2 and say the velocity here say

is u1 and the velocity here is u2 in a model, in a prototype. Say you have a model like this where

the equivalent point for P1 is P1 prime. Equivalent point for P2 is P2 prime and say the velocities

are u1 prime and u2 prime. Then u1/u2 will be identical to u1 prime/u2 prime. So you will be

basically having a sort of similar scale as the velocity.

Now if you do not want to consider the velocity as such but just have a more qualitative picture.

More qualitative but a more physical picture may be obtained from the concept of streamlines.

So if you have kinematic similarity, similarity in motion means the streamlines which are there

should also be geometrically  similar  because  similarity  of  streamlines  is  an indicator  of  the

similarity of the kinematics because streamlines relate to a visualisation of the kinematics of the

motion or the velocity vector.

Now remember that when you have streamlines, the contour of a body is also a streamline as we

have discussed because through the contour of the body, you do not have any penetrating flow.

So it is also a streamline. That means that if you want to have similarities in streamlines, you

must also have similarities in the contours of the bodies. That means for kinematic similarity,

geometric similarity is a must.

So that means whenever we say that there is a kinematic similarity that is prevailing, implicitly



we must understand that they are also geometrically similar. Additional restriction need not be

imposed. Kinematic similarity automatically ensures that. Just because the surface, the contour

of the body is itself  a streamline.  The third important concept  regard to the similarity  is the

dynamic similarity. Dynamic similarity is that similarity in forces. 

That means if they are 2 types of dominating forces which have certain ratio in the model, the

same ratio should be preserved in the prototype.

(Refer Slide Time: 09:07)

That means let us say that you have inertia force and viscous force. So if you have these 2 as the

important forces and competing forces, then you must have the ratio of the inertia force and

viscous force in the model same as the ratio of the inertia force/viscous force in the prototype or

equivalently in this case that means Reynolds number in the model same as Reynolds number in

the prototype, okay.

So again it may be inferred the dynamic similarity should imply kinematic similarity because if

you do not have kinematic similarity, then how can you have a dynamic similarity if you just

think about inertia forces. So obviously, it follows the dynamic similarity should have kinematic

similarity and kinematic similarity in term should have geometric similarity. Therefore, it is as

good as considering just the aspect of dynamic similarity.



It will automatically ensure kinematic and geometric similarity. It is very easy to talk about this

in  theory  but  when  you  go  to  experiments,  it  may  be  difficult  to  achieve  these  types  of

similarities as be a theoretically intending. We will look into certain examples to illustrate that.

But  before  that  we  have  to  discuss  about  one  important  thing  which  we did  not  explicitly

mentioned when we talked about the similarities.

So this discussion may give an indication that if you somehow have geometry kinematic and

obvious dynamic similarity, that means then you have essentially all types of similarities between

the model and the prototype. So whatever experiment you do in the model, you can extrapolate

that to the behaviour of the prototype. That in a sense true but incomplete. Because the first and

foremost requirement of a similarity is that the physics of the problem must be identical for

model and the prototype. So let us take an example.

(Refer Slide Time: 11:15)

Say you have a pipe of diameter 10 meter. Now somebody says that I will have an experiment

where I will have a geometrically similar thing with a diameter of 10 micron, okay. So it is just

as if geometrically similar thing. Let us say by some way the Reynolds numbers are maintained

to be the same, so velocities are adjusted in such a way that the Reynolds numbers are the same,

so dynamic similarity is preserved and from the dynamic similarity, it is possible to get a picture

of the behaviour in these 2 cases.



So if one does an experiment with this, may be one is intending to extrapolate it for this case.  It

will be totally wrong because the physics of the problem has got changed. It has got changed in

many ways. One of the most common way without looking into anything else is as you reduce

the size, surface tension effects become more and more important. So capillary effects will have

a strong role to play in terms of dictating the dynamical behaviour in this system where for this

such a large pipe, the capillary effects will not be that important.

So physics of the problem has changed altogether. Whatever were the important physical aspects

which were not important for the larger diameter pipe, for the much smaller size capillary, it has

become important. So no matter whether you maintain the Reynolds number to be the same, you

will come up with a wrong conclusion because in the small scale, the Reynolds number is not,

may be the dictating factor because inertia force is not important.

So instead of going through the ratios of these sudden forces or the non-dimensional numbers,

you have to first be ascertain whether this non-dimensional number is physically relevant for the

physics which is occurring over that scale or not. So that is very very important. So you should

not change from a scale to another scale for predicting the relative behaviour between the model

and the prototype in such a way that the physics of the problem changes altogether.

And that is one of the very important tasks for an experimental designer that one should not

design an experiment which changes the physics altogether from what happens for the prototype.

Now when you have these forces, the ratio of these forces, let us just look into certain examples

where we consider the ratios  of different  forces and those will  give certain non-dimensional

numbers. Reynolds number is one which we have already learnt and referred to many times. 

Let us look into some other ones. Let us say that we want to find out a non-dimensional number.

(Refer Slide Time: 14:14)



So some examples of non-dimensional numbers. These non-dimensional numbers are important

because in terms of these, you may reduce the number of parameters with respect to which you

parameterise  the results  of your experiments.  So let  us say that we consider  the ratio of the

pressure force by inertia force as an example. So pressure force, we will try to see what are the

scales.

Just in the same way as we did when we came up with an expression for the Reynolds number.

So pressure force will be some pressure difference * an area, right. So this * L square. Inertia

force is, first the mass that is rho * L cube * acceleration. So acceleration is like ududx. So u

square/L. So the ratio of these 2 becomes delta p/rho u square. Sometimes this is known as Euler

number. Let us say we want to find out the ratio of inertia force by surface tension force.

So inertia force by surface tension, so inertia force we have already seen. Surface tension force,

if sigma is the surface tension coefficient, sigma*L. So this becomes rho u square L/sigma. This

is known as Weber number. Let us say we want to find out inertia force/gravity force. So inertia

force/gravity force will be rho L cube u square/L/gravity force is mg, so rho L cube g. So that is

u square/gL. 

So this is a non-dimensional number, classically the square root of this one is considered to be

one of the important non-dimensional numbers called as Froude number, that is just u/square root



of gL, okay. Then some more examples let us go through.

(Refer Slide Time: 18:04)

Let us say we consider inertia force/elastic force. So rho L cube u square/L/elastic force. If you

have modulus of elasticity as E, then E*area, E*L square, right.  So that is equal to what? u

square/E/rho. What is E/rho? I mean what physical thing that it represents? It represents, square

root of E/rho represents what? The sonic velocity through the medium. So that is a. That means

this is nothing but u square/a square, where a is the sonic velocity or sonic speed through the

medium.

And we know that sometimes a square root of this one which is the Mach number which is a

very commonly used.  So the Mach number is  the square root of this  one,  that  u/a.  May be

another example, let us say viscous force/surface tension force. So viscous force, viscous force is

what? if you just want to write it for a Newtonian fluid, mu*the velocity gradient is the shear

stress.

So mu u/L*L square, shear stress*area and surface tension force is sigma*L, right. So that mu

u/sigma.  This  is  sometimes  known  as  capillary  number.  So  in  this  way  many  such  non-

dimensional numbers are possible that hundreds or hundreds of non-dimensional numbers are

there depending on the ratios of different forces but we have just introduced some of the more

common ones which may be pertinent to an introductory level course.



Now when we talk about similarity, we have to understand one thing that whether this similarity

is going to be maintained for all cases and that means that can you predict the real behaviour. So

2  questions  we  want  to  answer.  Can  you  predict  the  real  behaviour  without  satisfying  the

similarity in certain cases? The inverse that is if we do not satisfy the similarity, then what would

be the consequence or is it possible that in all cases?

We satisfy the true similarity and these types of interrelated questions we would try to answer

through some examples or problems. Let us look into that.

(Refer Slide Time: 21:41)

Let us say that we have one wind tunnel experiment. Wind tunnel for that force determination.

The scale is 1/4th scale and it is a test on an automobile with the length of the model as 1 meter,

the density of the model and density of the prototype, when we say density of the model and

prototype, these are not densities of the solids actually. These are densities of the fluids flowing

around.

So in a loose sense, we write density of model and prototype. It does not mean the car, density of

the car. It is basically the density of the fluid that we are talking about, the air. Then similarly the

viscosities of the air conditions,  2*10 to the power -5 Pascal second and the velocity of the

prototype is 25 meter per second. The first part of the problem is calculated the velocity of the



model.

Second part is the drag force on the model is measured to be 600 Newton. Calculate the drag

force on the prototype. Then the third part that experiments indicate that the range in which we

operating, the drag coefficient is independent of Reynolds number and it is equal to, CD for the

model is 0.5 with reference area as 0.19-meter square. Calculate the drag force on the prototype

and then from that, you find that why it is different from what is predicted in part b and the 4th

part, you find out what is the power required to overcome the drag force in the prototype?

So these are the parts of the question. So look into it one by one. So the physical scenario just

tries to get a picture of this that you want to design a car and you want to have the car design for

a speed of 25 meter per second and then for that you are having model experiment where you are

having the size of the model car 1/4th of that of the prototype one and the wind conditions etc.

are the same. The length scale of the model is 1 meter. So what is the velocity of the model. 

So here inertia forces and viscous forces are important because this is like Reynolds number is

strongly dictating it.

(Refer Slide Time: 25:42)

So for the dynamic similarity, you must have Reynolds number of the model same as Reynolds

number of the prototype. So that means you have rho model u model or we are calling V, so V



model l model/mu model=rho prototype v prototype l prototype/mu prototype. So the densities

are the same. Viscosities are the same. So Vm=Vt*lp/lm. What is lp/lm? 4. So this is 4*25 that is

100 meter per second.

Next the drag force on the prototype.  See what is the important coefficient  that,  what is the

important  relationship  that  should  dictate  the  equivalence  of  the  drag  force?  It  is  the  drag

coefficient should be same as in the model and the prototype. So you must have CD of the model

same as CD of the prototype. So you have the CDs what? The drag force/1/2rho V square*area

that is l square=FD of the prototype/1/2rho p Vp square*lp square.

So you have FD of the prototype, what is the drag force on the prototype? That is the drag force

on the model*Vp/Vm square*lp/lm square. Densities get cancelled out. So what is Vp/Vm? That

is 1/4th, right. So 1/16 and lp/lm is 4. So it will be what? What will be the drag force on the

prototype? So these 2 get cancelled out. So this is the drag force on the model which is 600

Newton, okay.

(Refer Slide Time: 28:11)

Then let us consider the third part. Experiments indicate that for the range of Reynolds number

in which one is operating for this case, CD is independent of Reynolds number. We have seen

that; such rangers are there. We have discussed about the physical situation under which it is like

that. So then CD of the model is 0.5. Area of reference for that corresponding CD is 0.19-meter



square.

So you can calculate that what is the corresponding drag force on the model and corresponding

drag force on the prototype. So if you calculate that, let me just tell that what you get. So the

drag force on the prototype that you get as of course CD of the prototype*1/2 rho V prototype

square*area of the prototype and you have the test on the area of the model. So you can write this

as area of the model*what? 16, right, l.

So area of the prototype/area of the model is l prototype square/l model square, right. So it will

be area of the model/lp/lm square, right. Velocity of the prototype you are already given. The

drag coefficient of the prototype is same as drag coefficient of the model and that is obtained

experimentally as 0.5. So from this if you calculate the drag force on the prototype, this comes

out to be 522.5 Newton, okay.

Now interesting is not what is the exact calculation but why these 2 predictions are different. So

the drag force prediction from part b is 600 Newton. From this one it is 522.5 Newton. This is

experimentally obtained, so this has more authenticity. Because the drag coefficient for model

and prototype is same, that you have used. This velocity is known and this is just from the model

area with the scale ratio.

Now why  you  feel  that  this  may  be  different?  See  the  key  is  just  try  to  use  the  common

understanding that CD is independent of Reynolds number. That means you may have CD of the

model=CD of the prototype without satisfying Reynolds number of the model same as Reynolds

number of prototype, right. So when you are assuming this and when you have in the range CD

independent of Reynolds number, may be you could have achieved it with a different Reynolds

number  but  still  your  prediction  goes  well  because  CD  becomes  independent  of  Reynolds

number.

So this is a case where without satisfying the so-called dynamical similarity, you are able to

come up with the prediction by exploiting the physical behaviour over that regime that CD is

independent of Reynolds number, okay. So these are critical titbits of similarity, not always like



you blindly look into the similarity but also look into the context in which it is being applied.

(Refer Slide Time: 31:52)

Then the 4th part of course that is very very obvious, power required to overcome. What is the

power required to overcome the drag force? It is the drag force*the velocity. So that is 13062.5

watt that is answer, okay. Now let us try to work out another problem.

(Refer Slide Time: 32:36)

There is a ship which is 100-metre-long and it is expected to sail at 10 meter per second and its

submerged area is 300-meter square. This is the prototype. The model is 1/25 scale, 1:25. Find

number 1, the model speed neglecting frictional effects. Second part is the drag force measured

on the model is 60 Newton when tested in a towing tank. Towing tank is just like equivalent to a



wind tunnel for a ship experiment.

So there is some artificial tank which as if simulate the sea or something like that and there the

model is tested, that is the towing tank, at model speed. So from that estimate the total drag force

on the prototype considering frictional effects  also. There are some of the data given for the

problem but we will come into that one by one. First let us broadly look into at least the first part

of the problem.

Second part there is some extra data that is given. Now before going into the problem, let us try

to have an understanding of the problem. So when there is a ship, now what are the important

resistance effects which are there? So one of the important resistance is of course the frictional

resistance is there, the viscous effect. The other important resistance is called as wave making

resistance.

So  because  of  formation  of  the  water  waves  and  there  it  is  a  sort  of  a  gravity  dependent

phenomenon.  So that  wave making resistance  and there  may be  a  third  resistance  which  is

because of formation of local Eddies and so on but that is usually much much negligible as

compared to the other 2. So here you have 2 types of important resistances. One is the resistance

because of the wave or the wave making resistance and the other is the frictional resistance.

Let us say that when you consider the wave making resistance. So if you consider the wave

making resistance, then what are the important forces which will be important, inertia force and

gravity force. So then the similarity will be determined by the Froude number, ratio of the inertia

force and the gravity force.

(Refer Slide Time: 35:57)



So if  you  consider  that  that  similarity,  then  you  have  V model/square  root  of  gl  model=V

prototype/square root of gl prototype. This is for that is considering the wave making resistance.

So Froude number of the model same as Froude number of the prototype. Also if you consider

the  viscous  resistances,  then  Reynolds  number  of  the  model  and  Reynolds  number  of  the

prototype, they should be identical.

So V model into l model/kinematic viscosity of the model=V prototype l prototype/kinematic

viscosity of the prototype. So from here what you get? V model/V prototype=square root of l

model/l prototype, g is not changing and from here what you get, V model/V prototype=l model/l

prototype, still you are having the same water with same kinematic viscosity. Now can you do an

experiment where you satisfy both?

That means if you want to satisfy this, you must satisfy lm/lp=square root of lm/l, right but they

are not one. 1:1 model is no model, right. 1:1 then model is a prototype, right. So this you cannot

satisfy.  These  are  very  interesting  situations  that  you  come  up  with  the  important  non-

dimensional numbers you see and you cannot satisfy. So you have to come to a compromise that

which one will you satisfy.

Let us say that you satisfy this because,  I mean you may satisfy only one of these for your

similarity. So let us say you give it a priority and that is what is considered in the first part. That



is you find out a model velocity neglecting the frictional effects. So if you neglect the frictional

effect then this is the solely dominating factor for the similarity.

Because then Reynolds number is not important if the frictional effects are not important. So if

you consider that, then the velocity of the model, it comes out to be 2 meter per second, okay.

Now  that  second  part  of  the  problem  and  for  that  some  extra  information  is  given  from

experimental data and let us just note down those that extra information.

(Refer Slide Time: 38:42)

So what are the extra things. The Reynolds number of the model is 8*10 to the power 6, the

Reynolds number for the prototype is 10 to the power 9 and you can clearly see that these 2

Reynolds numbers are different because you cannot simultaneously satisfy these 2 that is what

we have seen and from the experimental data of CD versus Reynolds number from this the CD

for the model is 0.003.

This  is  experimental  of  data.  So  what  you are  writing  is  whatever  has  been obtained  from

experiments. Considering these calculations have been made with a consideration of the density

as 1000 kg per meter cube for water. So now the question is what is the frictional drag force on

the model? See when you consider this CD, this CD is a representative of what? This CD is a

representative of the frictional drag, right.



It is not a representative of the wave drag. There are 2 drags. So out of the total drag force, you

can isolate the frictional drag. So how you isolate the frictional drag. So frictional drag is the CD

frictional*1/2 rho V square*the area, right. So if you substitute these values, so let us see that

what is the frictional drag force on the model. So CD for the model rho m Vm square Am. So if

you substitute all the values, all these values are given actually.

You will get 2.88 Newton, okay. So with this one, so you know the length scales, so from the

area of the prototype, you can calculate the area of the model by the square of the lengths, they

will vary. Velocities are already known, density known, CD also. This CD important is frictional

CD that has been calculated, that is what you have to keep in mind. So this is the frictional drag

force. So what is the wave making drag force on the model.

(Refer Slide Time: 41:19)

The total is 60 Newton, so 60-2.88, that is the wave making drag force. So that is 57.12 Newton.

What is wave making drag force on the prototype. If you have the wave making drag force on

the model, how do you calculate it? Yes. For the wave making drag force, you must have CD of

the wave making drag for the model and prototype to be same. So that means the wave making

drag for the model by 1/2 rho V model square * l  model square=wave making drag for the

prototype/1/2 rho V prototype square-l prototype square, right.

So from here you can get that the wave making drag on the prototype if you calculate it, it comes



out to be 8.92*10 to the power 5 Newton, I am just giving these numbers because you can

calculate these at your leisure time and see. Now what is the frictional drag on the prototype.

What is the frictional drag on the prototype? See your objective is to estimate the drag force

considering frictional effects as well. So this is the wave making resistance only. So what is the

frictional drag on the prototype.

(Refer Slide Time: 42:55)

So CD of the prototype*1/2 rho V prototype square*the area of the prototype, right. So this CD,

this is in the frictional CD. That means which one? This one. So if you substitute that that will

come out  to  be 0.225*10 to the power 5 Newton.  Some of  these calculations  may be a  bit

erroneous but just I am outlining the procedure, so just concentrate more on the procedure. So

this is frictional CD that we have to keep in mind and then the total drag force on the prototype is

the sum of the wave making+the frictional one, okay.

So what you see here is that you get a velocity by neglecting frictional effects, using that you use

the similarity in terms of the drag coefficient where you consider the wave effects because this

velocity was calculated by considering the wave effects. On the top of that from the experimental

data whatever you get, you utilise that for calculating the frictional resistance and then add those

together to get the total resistance, that is the whole idea, okay.

Now we will come to the other important part of this discussion of the dimensional analysis that



we have seen certain non-dimensional numbers but this non-dimensional numbers, how will we

know that what are the important non-dimensional numbers for a particular problem if you have

a particular number of variables valuables and that is given by something known as Buckingham

pi theorem. So let us try to look into that.

(Refer Slide Time: 45:04)

So what we are looking for, that if you have many variables for a system, how you reduce those

dimensional  variables  into  some equivalent  functional  relationship  between  non-dimensional

numbers, that this theorem tries to highlight how to do that. So it says that if there are n physical

parameters  and n fundamental  dimensions,  then the functional  relationship between all  these

maybe written in terms of m-n number of non-dimensional parameters or these are sometimes

known as pi terms that was the terminology used by Buckingham when he introduced it.

So this is as good as having a functional relationship between some non-dimensional numbers

pi1, pi2 up to pi m-n=0. So you are reducing m number of physical parameters to m-n number of

dimensionless  parameters.  How you do that?  The best way in which you will  understand is

through an example. So let us take an example to understand that how we reduce this.

(Refer Slide Time: 46:47)



Example, let us say that you want to estimate the pressure drop in a pipe of a given length l.

What is important for us is the pressure drop/length because we know that dpdx is physically

what is the important parameter. It is a dependent parameter. It is a function of which variables?

So if you have pipe of say diameter D in which a fluid is flowing, then what are the parameters

on which we should depend.

The diameter of the pipe that is 1, then what fluid properties? Viscosity, density, then average

velocity, then the surface roughness, average surface roughness. So first of all you must have a

physical idea of the problem. You cannot do a mathematical exercise without having a physical

idea of what are the important parameters. So we have identified the physical parameters. So this

is a sort of a dependent variable and these are the independent variables, okay.

Now we want to see that what type of functional relationship should hold true for that. So for

that we will write the dimensions of this parameters. So what is the dimension of this one? L.

What is the dimension of viscosity? ML to the power -1 T to the power -1. Viscosity, sorry

density, ML to the power -3. Velocity LT to the power -1 epsilon L. What is the dimension of

delta p/L?

So delta p is what? Delta p is Newton per meter square. Newton, Newton is mass*acceleration.

So MLT to the power -2 that is the... that divided by this one, that is the pressure and then /L,



right. So this is ML to the power -2T to the power -2, right. So now let us see that how many

number of fundamental dimensions are there. So number of fundamental dimensions, what? 3;

M, L and T, so that is = n for the Buckingham pi theorem and how many number of variables are

there?

1 2 3 4 5 and 6, so number of pi terms or dimensionless terms is 6-3, that is 3. So we will just

show that how to find out these pi terms. So fast to find out the pi terms, you have to select some

variables known as repeating variables. What are the repeating variables? You must have certain

variables, so number of repeating variables is same as the number of fundamental dimensions.

That means here you have 3 number of repeating variables.

How to chose the repeating variables? There are certain important things. First of all, out of the 3

repeating variables you choose, none of those should be the dependent variable, that is the first

thing.  None  of  those  should  be  dimensionless  and  none  of  those  should  be  having  same

dimension  and  maybe  the  most  important  thing  is,  collectively  they  should  contain  all  the

dimensions.

That is your objective is to select 3 valuables out of this in such a way that none of these are

dimensionless.  None  of  these  are  of  the  same  dimension  and  when  they  are  considered

collectively, they will contain all the dimensions. So you have a choice say, let us consider rho, V

and D as an example.
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So if you consider rho, V and D. So rho contains M, L. V contains L and T. So it is good enough

to consider  rho,  V and D. They together  contain  M L T all  and none of these are  of  same

dimension and none of these are dimensionless. Now in this way you could have many such

possible combinations out of these ones and that you are free to choose. So if you choose these,

then what we do?

The first pi term is written as say rho to the power x*V to the power y*D to the power z* one of

the variables, say delta p/L, okay. Similarly, pi2, you will have rho to the power xVto the power

y, say let us call these x1 y1 z1, say x2 y2 z2, *the other remaining variable. Other remaining

variable is mu and pi3 as rho to the power x3V to the power y3D to the power z3*epsilon. Then

how do you calculate pi1, pi2 and pi3.

So you have to keep in mind that this is dimensionless. So that means let us take an example. Let

us calculate the pi2 just to show you as an example. So rho to the power x2 is what? M to the

power x2*L to the power -3x2. Then V to the power -y2. So V to the power -y2 is L to the power

-y2*T to the power -y2. Then D to the power, sorry, this is not minus, I have confused it. This

was a over bar, right, sorry. 

So this was just the bar, D bar, right, okay. So M to the power x2*L to the power -3x2, then L to

the power y2*T to the power -y2, that is for the V to the power y2.



(Refer Slide Time: 54:18)

And then D to the power z2, so that is L to the power z2*mu. What is mu? Mu is ML to the

power -1T to the power -1. So this should be dimensionless. That means from these what you

get? x2 + 1=0 for M. For L,  -3x2 + y2 -  1=0. For T, -y2 -  1=0, right.  “Professor-student

conversation starts.” (()) (55:00) + z2, no, sorry, sorry. In the second term, you have the z2,

right.  This  is  +z2, second term because of that  L,  okay.  “Professor -  student conversation

ends”.

So from these you can calculate x2=-1, y2=-1 and what is z2? Z2 is also -1. So what you get as

pi1, sorry pi2.
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Mu/rho V bar T, right. You can easily recognise that it is 1/Reynolds number. See when you get a

dimensionless number, now what dimensionless number you will use in practice, it depends on

the convention. So you may use 1/pi2 also and that is what we actually use. So in this way you

can calculate pi1, pi3, what will be pi3? Can you tell? Like this is just by commonsense you can

say. Epsilon/D.

Other terms will go away. So pi3 will be epsilon/D and pi1, so if you write say delta p/L, so pi1,

can you calculate it? It will be, of course there will be some V square/2g type of thing that will

come there because delta p is there. So you will have a V square/2g which has a unit of what?

Unit of length and there is also a D, so it may be non-dimensionalised by D. So this will be a

important non-dimensional parameter but then you have to see that you also have a delta p/L.

So how the delta p/L combines with that, I am leaving it for you as an exercise. We do not have

much time left for this lecture but the exercise that I leave on you is at the end you have to show

that this boils down to that hf which is equal to, which is expressed as delta p/L is nothing but hf

rho g/L. From that hf will be a function of what? Reynolds number and epsilon/D or rather you

may better way in which you write that delta p/L or even hf form is fine. 

This small f is a non-dimensional number. This*L/D*V square/2g, that form, okay. So it is a non-

dimensional function of Reynolds number and epsilon/D*this one. So from here you can get



actually what is pi1, that is hf is delta p/rho g.
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And delta p/rho g*D/L*2g pi V square or its inverse, right, that you will get or basically you

might get the inverse of this one. So this is a form which is the D'Arcy Weisbach equation. See

that you get this equation not in the exact value type, in the form of an exact value but you get

the functional dependence. It reduces your number of experiments and makes you to come up

with a dimensionless parameter and the choice of the dimensionless parameter is, it depends on

the physical situation.

If pi2 is a dimensionless parameter of pi3, may be pi2*pi3 is a dimensionless parameter. Pi2 to

the power 1/2 is a dimensionless parameter. So important is you have 3 independent dimensional

parameters.  You  may  make  many  other  dimensional  parameters  or  sorry  dimensionless

parameters using this one. So the dimensionless parameters that you make, it depends on your

physical situation. Let us stop this lecture here. Thank you.


