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Lecture - 40
Boundary Layer Theory (Contd.) and Flow Past Immersed Bodies

In our previous lecture, we were discussing about some of the important concepts related to the

boundary layer theory and towards the end we were discussing about the displacement thickness

and the momentum thickness. Just to get some idea of how these concepts may be conveniently

used. Let us look into one example. 
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Let us say that you have duct. This duct may of square shape or whatever shape. Let us assume

that the section of this duct is a square, just for convenience and we are focusing our attention on

2 sections, 1 and 2, which are located relative to each other by a distance L along the axial

direction and our interest is to find out that what is the average pressure gradient acting over this

length. Sometimes it is not a very impractical situation. This is a very practical situation actually.

If you somehow want to assess the flow past different bodies in something called a wind tunnel.

So if you have heard of something called as wind tunnel, wind tunnel is an artificial place or a

location where you have controlled flow of air and you may study the effect of flow of air past

bodies of different shapes. So the key is that if you have a body of a particular shape and the



body is moving in air, the fact that dictates that what should be the resultant force is the relative

velocity between the solid and the fluid.

So you may keep the solid stationary and make the fluid flow past over it. It is as good as having

the  solid  moving  through  the  fluid  with  the  same  relative.  So  if  you  have  a  controlled

arrangement tunnel, in the tunnel, you put a solid somewhere and have a controlled flow of air

over the solid and measure various parameters. Some of the parameters of interest may be say

pressure drop.

Let us say that at the sections 1 and 2, we know, by some measurement, we have got an idea of

the velocity profile within the boundary layer. That is, you know that what is U/U infinity as a

function of Y/delta. Remember here, there is nothing called as U infinity because here it is a

confined flow. So it may be U/U outside the boundary layer. U outside the boundary layer is the

U corresponding to the central line maybe.

So U/U outside the boundary layer as a function of may be Y/delta. So let us say that that profile

is known. Then, also it is known say that what is the total rate at which the fluid flow is entering

the system. So that is also known because that is what is controllable. So to get a simple estimate

of this delta P/L what one may do is one may get an estimate of the displacement thicknesses at 1

and 2, delta 1* and delta 2*. What are these.

Of course we have the corresponding expressions like as we have derived in the previous class.

So if you either have a measured velocity profile or if  you have some approximate velocity

profile, that is also fine, but you should have a fair enough estimation of the boundary layer

thickness and that is possible because if you have a velocity flow across the section, you will find

that beyond a certain distance from the wall, the velocity gradients are not there.

That distance you may estimate as the boundary layer thickness. So this is how you get delta *.

Once  you  get  delta  *,  for  average  predictions,  you  may  forget  about  the  boundary  layer

characteristics  altogether.  Because  then,  your  situation  is  equivalent  to  that  you  have,  as  if



displaced the solid boundary by an amount say delta * so that the flow now is taking place within

the narrow domain, but almost in an invisible fashion.

So then, you may write, if you consider that v1 is the velocity of the fluid in the inviscid core

through section 1 and may be v2 is the velocity of the fluid, which is going flowing through the

inviscid core at section 2, then you may write from the continuity equation Q=v1*, what is the

equivalent a1, let us say that the square has a section a x a. This is the section of the wind tunnel.

So v1*a-2 delta1* square that is how you relate v1 and v2.

So this is one of the relationships you get. Not only that, since these are inviscid core and let us

say that you have negligible difference in height, you can always use the Bernoulli's equation if it

is an incompressible flow. So P1/rho+v1 square/2=P2/rho, these P1, P2 are not very accurate or

local P1, P2. These are like sort of average P1, P2 over a section, but if you get these ones, then

you will see that you may write it in terms of v1 square and v2 square.

You get another expression involving v1 and v2 and depending on whatever is measured and

whatever is not measured by using this very 2 simple relationships, you can find out the pressure

difference  or  whatever.  It  depends  on  what  you  measure  and  what  you  estimate  from  the

calculations. The basic principle is you may use these equations depending on what is known and

what is not known.

Again the important understanding is that this is not very accurate, but for many engineering

estimations, that kind of local ideation and accuracy of local ideation is not what is required and

we required  is  just  an  average  pressure  difference  and  in  such  cases,  these  type  of  simple

estimation is fine. Now the other important part is that what we assume implicitly while looking

into this problem may be that we assume that the boundary layer is thin.

Now it might also happen that the boundary layer is thick. Obviously, if the boundary layer is

very thick, the boundary layer theory will not be valid. That is one of the things, but despite the

validity or invalidity of the boundary layer theory, you will have thick boundary layer, only the



corresponding theory that we have developed might not work, but it does not mean that boundary

layer may not be there if it is thick.

But what is our expectation in these cases whenever we have almost presumed that the boundary

layer is very thin, if the Reynold’s number is very, very large. So in these cases, we are looking

for experiments of large Reynold’s number flows. Towards the end of such discussions, we will

come into such cases where the Reynold’s numbers are very small and you will try to see that

what are the corresponding demarcating features.

We will not go into the mathematical details of such cases. Sometimes the mathematical details

of low Reynold’s number flows, although apparently they might be easier, sometimes they may

be more important. We will not go into that details, but what we will try to see is that what is the

characteristic demarcation between the very low Reynold’s number flows and high Reynold’s

number flows.

One of the important hallmarks of high Reynold’s number flows that we have identified that the

boundary layer is very thick and that is what we have assumed for this case, so that boundary if it

is thick and it is thicker than the width of the, of course it cannot be thicker than half of this one,

but  if  it  is  as  good as  almost  half  of  this  one,  then this  estimation  will  be more and more

erroneous. Because this entire estimation was based on boundary layer equations, which were

based on the assumption that delta is much, much small as compared to the axial length scale.

So all those assumptions we may not be able to justify, if we have low Reynold’s number flow.

Now  the  second  big  question,  this  question  always  appears  to  my  mind  when  I  first  was

introduced into the boundary layer theory, that if the boundary layer is so thin, why not neglect it

at all. Because after all if you have a flow domain, say you have some body and fluid flow past

it. Now if the boundary is very, very thin and the remaining parts does not understand the effect

of the wall to get a gross effect of the flow, why not neglect the boundary layer altogether.

Because at  least mathematically when something is very small  in comparison to many other

things, we have neglected it many times. So why we cannot do it for the analysis of the boundary



layer. To understand that, let us look into a very simple problem. We are trying to answer a

question that why not neglect the boundary layer altogether if it is so thick, that is the question

that we are trying to answer.

That question we will try to answer not through direct use of the boundary layer theory but

through a separate example.

(Refer Slide Time: 10:44)

Let us consider this as an example. Say you have 2 parallel plates and let us say that these plates

have some holes, through which fluid may flow vertically. That means, let us say as an example

that some fluid with a velocity enters the pores in the top plate with a uniform velocity v0 and

leaves through some pores in the bottle. That is one of the things, the other thing is let us say that

it is basically quick flow, so that the top plate is pulled towards the right with a velocity relating

to the bottom plate.

Let us say that the velocity Ut. So let us also assume that it is a fully developed flow. Basically

flow between 2 parallel  plates just like the quit  flow that we have discussed while we were

discussing the exact solution of the Navier-Stokes equation. Assume that there is zero-pressure

gradient that means the pressures at the inlet and outlet are the same. Only extra thing we want

what we considered in that problem is now you are having a transverse motion because of some

suction effect, which is sucking some fluid from the top and releasing it to the bottom.



There is forced vertical component of velocity. We will later on see that these type of suction is

not something which is very irrelevant. It has some consequence with the boundary layer theory.

We will come into that later on, but right now we are just treating it as a simple problem, which

may be treated mathematically in an elegant way. So let us write the governing equations for this.

The governing equations to set that up, let us set the coordinate axis, say x and y, like this.

Let us say that the gap between the 2 plates is H. So the continuity equation, first let us write, so

we are assuming 2 dimensional incompressible flow. These are the continuity equation, also the

flow is fully developed. What is the outcome of the fully developed flow? So this will be 0 for

fully developed flow. From here, we conclude that v is not a function of y. From this, can we

predict that what should be v for this problem, v=-v0.

Because at y=h, v=-v0, this is v is not a function of y, therefore it should be same for all values of

y.  So  v=-v0.  That  is  what  we  get  from  the  continuity  equation.  Next,  let  us  go  into  the

momentum equation, x momentum equation. So let us simply it. First of all, we are assuming

that no pressure gradient is acting on this pressure at the inlet and exit are the same. It is fully

developed flow, so you have the derivatives u and the higher order derivatives all with respect x

vanish, so u is the function of y only.

V becomes  =-v0,  so  the  governing  equation  that  you  get  is  v0  du/dy+nu  d2u/dy2=0.  Now

sometimes this analysis becomes a bit more insightful, if we non-dimensionalize the parameter,

so let us just use some non-dimensional parameters. Let us say u non-dimensional=u/u of the top

plate and let us say y non-dimensional=y/h.  So this governing equation will become v0u top

plate/h du dy+nu u top plate by a square d2u/dy2, all non-dimensional=0.
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So we may  write  it  in  a  simplified  form as  d2u/dy2+v0h/nu  du dy=0.  V0h/nu  is  a  sort  of

Reynold’s number. If you recognize this, first of all it is a non-dimensional number that you must

recognize because all other terms are non-dimensional. So it has to be non-dimensional and it is

something  as  a  Reynold’s number,  we  can  say, just  as  this  involves  here  writing  this.  Our

objective will be to solve this equation. Solution of this equation is very easy actually.

Because it is just a second order ordinary differential equation and you may just use the standard

technique like substitute u=e to the power my and then get auxiliary equation and so on, get the

solution of this equation. We will not go into the solution in that way, but we will try to have a

different insight by going through a different method of solution. So what we will do, first of all

for writing convenience, let us just omit the bar at the top.
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So we will just write d2u/dy2+Reynold’s number*du/dy=0. Remember these are actually u bar y

bar, just for convenience in writing, we are dropping the bar. Now what we will do is, we will

consider to limiting cases.  What are the limiting cases? 1 is Reynold’s number is small. This is

the first case we will consider. Let us say that is= epsilon. When the Reynold’s number is small

or is epsilon, see this problem may be viewed upon in this way that you have say undisturbed

state when there is no vertical component of velocity.

So it is like a regular quite flow. Now you are adding a small disturbance velocity to it and that

disturbance  velocity  may  be  thought  of  as  a  perturbation  to  the  usual  quite  flow  and  that

perturbation is going to affect the solution of the velocity. In that case, there is a method known

as method of perturbation where what you do is you may expand u as u0+epsilon u1+epsilon

square u2 like this.

What you are doing, you are expanding u in the form of a series in powers of epsilon, where u1,

u2, these are not u0 are not constant. These are functions of y. So what you are having, you are

having term by term, higher order terms, maybe less and less important, because epsilon is small.

So it  is as good as the power series expansion in terms of small  number. This is known as

perturbation expansion. So what you are doing, u0 is the so called base state, which does not

understand the effect of v0.



Because of the effect of v0, the additional perturbations in u0 come into the picture and these

perturbations are given by this. Now the way in which you may solve these is very simple. It is

just algebra, so what you do is you substitute these expressions of u in the governing equation.

So  if  you  substitute  that,  what  you  have  d2u0/dy2+epsilon  d2u1/dy2+epsilon  square

d2u2/dy2+epsilon du0/dy + epsilon square du1/dy + epsilon cube du/dy=0.

We have done nothing special,  just  substituted  these series  expansion of  u  in  the governing

equation. Now, what we will do, we may equate the like powers of u, that means what you have.
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That means you have d2u0/dy2=0 that is 1 equation, that is of the order of 1. Then what is the

order of epsilon d2u1/dy2+du0/dy=0, this is of the order of epsilon, then of the order of epsilon

square d2u2/dy2+du1/dy=0 and so on. Depending on how many terms you take, you may go on

writing terms of various orders, which will give their individual governing equations. Then this

u0, u1, u2 should also have their own boundary conditions.

So how do you assess that what should be their conditions. What are the boundary conditions?

Boundary conditions are at y=0, u=0. That means u0+epsilon u1+epsilon square u2=0. So y=0,

you must  have individually  u00,  u10, u20,  like that.  What  is  the other  boundary condition?

Second boundary condition, this is a non-dimensional y, remember. So at y=1, what is u? u=1,

non-dimensional. So that means you have 1=u01+epsilon u11+epsilon square u21, like that.



These are all at 0, you have to understand this. So then what are the boundary conditions on u0.

So u00=0 at u01=1 by equating the like coefficients from the 2 sides of this series expansion for

the boundary condition. So then what is the solution of this? You have du0/dy=some constant

C1, so u0=C1y+C2, at y=0, u0=0, therefore you have C2=0 and at y=1, u=1, that means C1=1.

So you have u0=y. Next you come to the second one, the order of epsilon.

What it will give you, d2u1/dy2+du0/dy is 1=0. If you integrate it, du1/dy=-y+C3 and u1=-y

square/2+C3y+C4. What are the boundary conditions on u1, u1 at 0 is 0, that means you have

C4=0 and u1 at 1=0 from this expansion. So at y=1 this becomes, what is C3, at y=1, this is 0, so

C3 becomes half. In this way, you may have expansions of higher and higher terms, so at the end

what is the solution that you are going to get.
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The solution that you are going to get is u=u0+epsilon u1+like this, so u0 is y + epsilon u1 is

1/2*y/2*1-y. In this way, you have series of terms. If you compare this with the exact solution,

let  us find out the exact solution of this, so if you substitute u=e to the power ny as a trial

solution. So you have m square + epsilon m=0, that is auxiliary equation. So m=0, -epsilon. So

you will have u=some A+B e to the power –epsilon y. 



Boundary conditions at y=0, u=0, so u0=0 will give you 0=A+B and u1=1 will give you 1=A+B

e to the power –epsilon. From here, you can find out A and B. It will be nice and interesting to

see that it is exponential. Of course, you can clearly see it is an exponential variation. Now you

may write  it  in  the  form of  an  exponential  series,  e  to  the  power  x like  1+x/factorial  1,  x

square/factorial 2 like that.

You will see that these terms will be sum of the terms of the initial part of the exponential series.

More and more number of terms you take, you can cover the more and more accurate part of the

proper exponential series, but this might be the dominating terms. In this way, you can see that if

you have a small perturbation,  you may get a solution in this series expansion and that in a

limiting sense of small epsilon may match quite accurately with the limiting value of the exact

solution, that is fine.

This is for low Reynold’s number. Let us consider the other case, he Reynold’s number as large.

So the second limiting case that we are considering is the large Reynold’s number.
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Reynolds number as large, what we have seen is that one of the tricks in which you may use the

perturbation method is by expanding it in the form of a series where you have powers of small

quantities, like powers of epsilon, where epsilon is a small number. Now here if you treat it as



epsilon,  epsilon  is  not  small,  because  Reynolds  number  is  large,  but  you  may  introduce  a

delta=1/epsilon. That will then be small. So then, just replace the epsilon with 1/delta.

So you have du/dy + delta*d2u/dy2=0. We have just switched the variable from epsilon to delta.

Why? The expectation is that now delta is small, so we should be able to write a power series

expansion as we did for the previous case. Let us try to do that. If we try to do that, try for

expansion of u.
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You write u=u0+delta u1+delta square u2 in this way. Now in the place of epsilon, your small

variable is delta. Substitute it here. Now you try for expansion of u in this way. You substitute u

as  a  function  of  y  here.  So you have du0/dy + delta  du1/dy + delta  square du2/dy + delta

d2u0/dy2+delta square d2u1/dy2+delta cube d2u2/dy2=0. So if you isolate  terms of different

orders, the leading order term will be du0/dy=0. That is the leading order term.

What are the corresponding boundary conditions? Let us again expand the boundary conditions,

so you have u0, which is =0, here we are writing the boundary conditions u0+u0 at 0+delta u1 at

0+delta square u2 at 0, like this in this way. Similarly, u at 1, which is =1=u01+delta u11+delta

square  u1  like  that.  So  again  by  equating  the  like  coefficients  what  are  the  corresponding

boundary conditions for this, what is u00? What u01? 1.



Can you satisfy these 2 boundary conditions by solving this? This gives u0=constant. You cannot

simultaneously  satisfy these 2 constants.  These are  very simple examples.  How interestingly

mathematics gives you beautiful physics. Where are we lacking here? As I was telling you as a

part  of boundary layer  theory, in  the boundary layer  theory, you have the coefficient  of  the

viscous term may be small in comparison to the coefficient of the inertia term.

This is like an inertia term; this is like a viscous term. So this coefficient is small, because of the

smallness of the coefficient, you may be tempted to discard this term altogether and that is what

has happened. In the process, what has happened mathematically, mathematically, your second

order differential equation has got converted into a first order differential equation. So it cannot

satisfy the 2 boundary conditions with the second order differential equation demands.

So in whatever way you make an approximation, you cannot reduce the order of your governing

equation, because then you cannot match with the boundary conditions, which must be satisfied

or which must be given by the proper higher order governing differential  equation.  So here

forcefully, the governing differential equation has got reduced to first order, although you have to

satisfy the corresponding boundary conditions given by the requirements of the second order

equation.

That  is  one  of  the  basic  mathematical  reasons  why you cannot  neglect  this  term altogether

although the boundary layer  is  thin.  These are  something to  do with the equivalence  of  the

thinness of the boundary layer. Because this is 1/Reynolds number. We know that in boundary

layer theory, Reynolds number is large. So this has some sort of analogy with the boundary layer

theory, full analogy mathematically, partial analogy physically.

But  mathematically  it  is  fully  analogous  because  you are  having  a  small  coefficient  of  the

viscous term, so to say and that is what we have to remember that in no way, no matter how

small it is you can neglect it out, because then it becomes mathematically a heel post problem.

Physically, that means what? That means physically also you cannot justify such an assumption.

So when you physically cannot justify that assumption that means that you must give a due

important to the boundary layer.



What is the difficulty in giving a due importance to the boundary layer? The difficulty is that the

boundary layer is so thin. So maybe you are getting an illusion, you are thinking that will, I

should not  capture the boundary layer, because it  is  so thin,  but  if  you want  to  capture  the

boundary layer properly, one way is like you magnify the boundary layer. So as if the boundary

layer is very thin, but you are sitting with a magnifying glass, which zooms up the boundary

layer to a large extent.

So that you can see whatever is happening within it.  You can resolve whatever is happening

within it. So then what you have to do. Within the boundary layer, say the transverse coordinate

is y, you have to apply a magnification factor to the coordinate, so that it becomes large enough,

low in proportion and although it is thin, within that boundary layer, if you resolve it properly, it

has to be given due importance. That is what we are mathematically recognizing.

Now we are  trying  to  see  that  physically  how we  can  give  it  its  due  importance,  only  by

resolving it properly. To resolve it properly, you have to understand that since it is thin, you have

to apply a magnification factor to it. If y has a range within the boundary layer, which is 0 to a

very small number, which is so small as compared to your flow domain that it is not coming

within your resolution. So what you may do?

You may apply a magnification factor and a natural magnification factor is 1/delta. Here if you

introduce  a  new variable  eta=y/delta,  then  what  happens,  this  is  the  small  number. You are

dividing it by something small to blow it up or stretch it up. So that means the boundary layer

whatever  is  resolution,  you  are  trying  to  stretch  up  its  resolution  by  applying  these

transformations. So this is known as stretching transformation in mathematics.

The whole idea is that since you are having a very small region, which you desperately want to

resolve physically because if you cannot resolve it, you cannot solve the problem, but physically

if you want to resolve, you must use a different coordinate for that. That coordinate should be a

blown up coordinate, not the original coordinate and that blowing up factor is 1/delta.



Keeping in mind that delta is small. Now if you see, recast the variable. So instead of y, you use

the eta. So then what is du/dy. So du/dy is du/d eta *d eta/dy. So this is 1/delta, then this term

delta d2u/dy2 is 1/delta square d2u/d eta 2. Now you see from both the terms, you may cancel

1/delta. See 1/delta is not 0, it may be small, but it is not 0. So there is a difference between small

and 0, that is what we are trying to highlight here.

It may be limitingly small, but that does not mean that you may have the liberty of taking it as 0.

What is the governing equation?
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The  governing  equation  becomes  d2u/d  eta  2+du/d  eta=0.  This  we  say  is  the  appropriate

governing equation for the inner region. Now we are demarcating the flow region into 2 parts, 1

is the inner region, inner region is what, that is the boundary layer. That means the region very

close to the wall where you really want to resolve this high gradient. So that is the inner region.

In the outer region, that is outside the boundary layer, this equation is fine.

It should have no problem because outside the boundary layer, the resolution of the boundary

layer is not important. So for the outer region, you can still use the original differential equation.

You are still using the original differential equation, but with a rescaled value. This is the outer

region. So you have 2 variables, 1 is y another is eta. These variables directly do not know each



other. Eta is the inner variable, which has the sort of has the responsibility of resolving only the

boundary layer.

This is what, this is like the outer variable, which sort of has the responsibility of resolving what

is there outside the boundary layer. So what it means is that these 2 variables may be treated

independently. When you want to treat the inner variable, you have to keep in mind that anything

outside the boundary layer is like eta tends to infinity. Because inner variable is only confined

within the boundary layer, outside the boundary layer is something very large for that guy who is

sitting in the boundary layer.

For that it becomes a coordinate like infinity. If you want to solve this, it is possible to solve

these now with the perturbation. Now if you want to apply the perturbation method with the

inner and outer region separately by resolving and rescaling the inner region, this is known as the

singular perturbation method. It is different from the regular perturbation method that we have

seen.

Singular perturbation method is important because you want to resolve what is happening in a

very thin region close to the wall and therefore you are having a rescaled variable. We will not go

into the details of the singular perturbation method. Just for giving you the information on the

name of the method, I am giving it, but we will just try to solve these 2 equations independently

and try to match them and see that what solution we get out of that.

If you solve this equation,  if you use u=e to the power m eta as a trial  solution. Our whole

objective now is not to just do the full perturbation analysis, but to see that how you match the

inner and outer solution, because they directly are 2 different variables, but somehow the outer

solution must know what is the inner solution. That is how to get the complete solution. So u=e

to the power m eta if it is the trial solution, then you have m square + m=0.

That means m=0, -1. So u=some C1+C2 e to the power –eta. What is the boundary condition that

you can apply on u? At the wall, definitely this the thing that you were looking for within the

boundary layer. At the wall is u at eta=0 that must be =0. That means you have 0=C1+C2 that



means C2=-C1. So u=C1*1-e to the power – eta. Question is how do you get C1. For that, you

have to match this with the outer solution. So you have to know what is the outer solution.

For  the outer  solution,  you may use the perturbation  method.  Let  us  apply  the  perturbation

method for the outer solution at least.
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This is the outer solution. This we had just written earlier, but where we failed. We tried to apply

it for both the boundary layer as well as whatever is outside the boundary layer. Now we know

that it fails within the boundary layer, we are not trying to use it within the boundary layer. But

outside the boundary layer anyway, the viscous effect is not there, so you may totally disregard

the viscosity outside the boundary layer. That physics we are trying to use here.

If you recall that from here, what we got is du0/dy=0 obviously from the highest order term and

what were the boundary conditions for this, if you recall for u0, u0 at 1, u0 at 0 we cannot use

because this is not validate 0. This is only in the outer region. So only we can use that u01=1.

That means the solution of u0 is 1 because u0 is a constant. Now you have to make a matching.

What is the matching?

The matching is y tends to 0 for the outer region is equivalent to eta tends to infinity for the inner

region.  As  if  where  the  outer  region  starts  are  beyond  the  tractability  of  the  inner  region



coordinate. So this is the limiting sense in which, this is called the matching condition between

the outer and the inner region. So when you have y tends to 0, you do not care what is y tends to

0, because this is same for all y, but eta tends to infinity is C1, so u becomes C1.

That means from here you will get 1=C1. That means your complete solution in the boundary

layer  becomes u=1-e to  the power –eta.  What  is  the trick of  this  method? The trick is  you

introduce a separate coordinate for the boundary layer, which you call as inner region where

basically you stretch up the local coordinate, you use an outer region coordinate for which you

may sacrifice even by lower the order of the equation.

Because higher  order equation you may preserve within the boundary layer. Because higher

order term is important, that is the second order term in the governing differential equation is

important  only within the boundary layer, where viscous effects are only important  and then

match of the 2 solutions by considering the limiting values of the inner and outer coordinates. So

at least from these exercises this is reasonably simple and tractable mathematically.

But with this, we have understood a very important concept. What is the concept, that you cannot

neglect  the  effect  of  the  boundary  layer  altogether,  although  that  may  be  thin  and  how  to

mathematically track that, you see that y/delta is something in our similarity variables we have

introduced y/delta and see start from the experimental observations of Blasius. Blasius observed

that u/u infinity is a single valid function of y/delta. So y/delta did not come up to Blasius as a

mathematical entity. 

It came up to him as a physical entity from the experiments. Then, similarity transformations

were automatically giving rise to a tractable solution if you rescale the variable as eta=y*some

function of x, gx where that scales with 1/delta and therefore we see that y/delta is a sort of a

magic coordinate system within the boundary layer, which gets conformed by this analysis also.

What it essentially does physically, it zooms up the boundary layer coordinate by applying it a

stretching by an amount 1/delta.



The fact that we have understood that the boundary layer is important and it cannot be discarded

altogether, so we have to understand that what are the importance of the boundary layer. We have

to now see that if there is a body, which is immersed in a fluid and if there some force, which is

there acting on the body, what are the consequences of these forces under a dynamic condition.

That means if a fluid is flowing past a body.

Then there is a boundary may be at high Reynolds number. The boundary layer is very thin, but

if there is a fluid element or may be a fluid particle located within the boundary layer what are

the forces that the fluid particle feels from within the boundary layer. So let us identify the forces

experienced by a fluid particle located within the boundary layer.

(Refer Slide Time: 50:20)

When there is a fluid particle located within the boundary layer, it is being subjected to at least a

couple of effects, 1 effect coming from the top of it, another effect coming from the bottom of it.

The general understanding is whatever is there at the top of it, is trying to pull it forward because

it is there with a higher velocity, that may be the free stream velocity for flow on a flat plate. So

you have a forward pool of the outer stream.

How this forward pool of the outer stream is transmitted into the boundary layer by viscous

action for laminar flow directly and by the momentum transport between the eddies for turbulent

flows. So transmitted into the boundary layer by viscous action or momentum transport. Then,



obviously there is a wall at the bottom which tries to slow it down. So slowing down effect by

the wall shear stress, that is also one of the forcing parameters.

This effect is always present because the fluid is viscous and at least within the boundary layer,

there  are  velocity  gradients,  that  means  you  have  both  the  viscosity  as  well  as  the  rate  of

deformation, so the shear stress will be there. Apart from that, we have not considered till now,

but we will consider subsequently is any effect of pressure gradient on the flow. Force due to

pressure gradient on the flow.

When we consider flow on a flat plate, the first 2 situations were stream working. You had the

outer stream trying to pull the thing forward, because it is moving with a higher velocity, the wall

is trying to slow it down. So these 2 for a laminar flow these are like artifacts of the shear in the

flow, but not only have a shear in the flow, you may also have a pressure gradient in the flow.

Pressure gradient in the flow is important for flow on a flat plate.

We have seen that because for that if you have u infinity as constant, you have dp infinity/dx=0

and what is the important thing that we could understand of the general boundary layer theory.

That whatever is the pressure gradient imposed from the outer stream, the same pressure gradient

acts on the fluid in the boundary layer. Therefore, if there is no pressure gradient in the outer

stream, obviously the boundary layer fluid is not subjected to any pressure gradient.

But if instead of a flat plate, you have curved boundary, then because of the curvature effect, you

will have a pressure gradient. Why because of a curvature effect, you will have pressure gradient,

we will come into the theoretical aspect of it, but as engineers we must understand the basic

physics out of it, let us say, you have flow over a body of a circular shape. Think in this way,

consider a fluid which is hard away from the boundary. It is like being in a free stream like this.

Now when you come close to the wall, the wall will have some effect, so it cannot move like

this. If you consider extreme streamlines may be one located at a very far distance, it  is not

feeling its effect, so it is moving like this and the shape of the body itself is a streamline. Because



there is no flow across it, so you have as if a confinement like this, but this is one end of the

confinement, this is an outer end of the confinement.

From here to here, you see that the area of cross section is gradually decreasing. So it is like a

converging cone of venturimeter, so to say and here you see that the area of cross section, that

the  flow gets  is  continuously  increasing.  So it  is  like  a  diffuser  and  therefore  the  pressure

gradients acting on these sections are different. In one case it is favorable and in another case it is

adverse. In which side it is favorable, left or right?

Left side it is favorable on the other hand; on this side it is adverse. So you can clearly see that

the effect of the curvature of the body itself is sort of introducing a pressure gradient and that

pressure gradient must exert some resultant force on the body. So that we must understand that

what is force due to pressure gradient that is there in the flow. So the important thing is that the

pressure gradient in the flow may be induced by curvature of the body itself.

Therefore, our next objective will be to study that what is the effect of the pressure gradient in

terms of the force acting on a body which is immersed in a fluid and fluid is passing across it. It

is very, very important because almost all engineering objects are not like flat plates. So they

have certain curvatures and there will be effects of pressure gradient starting from engineering

objects, sports balls like tennis balls and cricket balls and so on.

These are having certain curvature. So when they move in the flow, what types of forces act on

that and how these things are deviated from their original trajectory because of that will be a

matter of great interest and that we will study in our subsequent classes. Thank you.


