Introduction to Fluid Mechanics and Fluid Engineering
Prof. Suman Chakraborty
Department of Mechanical Engineering
Indian Institute of Technology — Kharagpur

Lecture - 39
Boundary Layer Theory (Contd.)
In our previous lecture, we were discussing about the momentum integral equation for
boundary layer in presence of 0 pressure gradient and we came up with this form of the
expression and the whole objective of doing the analysis was to calculate the wall shear
stress.
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Now, if you look into this expression, you will see that, you may calculate the wall shear
stress provided you know what is the velocity profile within the boundary layer. Because that
is what is an unknown in the integral expression which is there. The big question is that, what
should be the velocity profile. Any velocity profile, which you may choose or approximate.

In general, will not be the correct one.

Because, the correct one should come out of detailed solution of the flow field and then what
is exactly there within the boundary layer. But, you may always substitute this velocity
profile with some approximate velocity profile, which sort of satisfies your boundary
conditions. So, when it satisfies your boundary conditions and the velocity profile is

substituted here, our expectation will be that the velocity profile may be inaccurate.



But in a somewhat integral form the velocity profile should give not a bad estimate of the
wall shear stress and this expectation is from the fact that after all the boundary layer is very
thin. So, error in the velocity profile may be important when you consider the velocity profile
as such but in the integral sense, the integral of the velocity profile might not be that

erroneous. That is one of the expectations.

So, whether that expectation is justified or not, the best way in which we may look into it by
some example. So, let us say that we want to have a polynomial approximation of the
velocity profile. So, for example, we may have different forms of this expression like one
may assume a polynomial like this. Even you may consider 4th order term and that is what

was done by an engineer as Pohlhausen.

So, his particular method was dedicated in the name of his honor. But, here we are not going
for a 4th order polynomial. We will leave that one you as an exercise in your assignment
problem. We will consider a third order polynomial. Even one may consider a first order
polynomial, one may consider a sinusoidal function, so many different forms of the functions

are possible.

Within the constraints of the function, you have to satisfy the most important boundary
conditions. So, that this unknown constants a0, al, a2, a3 whatever, these are determined. So,
let us look into this special case as an example problem and see that how do you calculate the
boundary layer thickness, the wall shear stress and the total drag force on the plate on the
basis of this. So, to do that, first of all we have to understand that how do we calculate these

coefficients.

So, if you have 4 coefficients, you must satisfy 4 boundary conditions to get these 4
coefficients. Let us see what are the most essential boundary conditions that you need to
satisfy. What is the physical problem we are considering? You have a flat plate on which you
have a free stream flow coming with a velocity u infinity and the boundary layer is growing

like this and you are interested in describing a velocity profile at a section x.

So, what are the boundary conditions that you want to satisfy? What is the most essential
boundary conditions that you would always like to satisfy? See, the boundary conditions

should come in order of priority. Because, if you choose lower order polynomials, you may



not be able to satisfy all the boundary conditions. Because, you have less number of
coefficients. But, the most essential one you should always satisfy. What is the most essential

one? Loosely boundary condition at the wall. So, u=0 at y=0.

Then, what happens in the outer stream? So, let us say that y=delta, y=delta in an engineering
sense is equivalent to y tends to infinity in a mathematical sense. Because, outside delta
whatever happens is like hot stream okay. So, literally it is the variable y/delta eta tends to
infinity. But, it is as good as y=delta. So, at y=delta what are the boundary conditions? Okay
u=u infinity at y=delta. Any other boundary condition at y=delta? So, u does not change
further with y at that. That means, the gradient of u with respect to y=0 at y=delta.

A 4th boundary condition. Of course, you may go on adding here like in terms of boundary
condition at y=delta, you may also have the second order derivative of u=0. But, more
important boundary condition, which has a priority of what this is what happens at the wall.
Because, at the wall, you have one boundary condition but if you really have a liberty to put
more, the priority should come there because, these 2 are quite sufficient to describe what

happens at the boundary layer.

But this alone is not very sufficient to describe what happens at the wall, if there are scopes of
incorporating more boundary conditions at the wall, it would be better. So, look at the
governing equation, let us try to satisfy the governing equation at the wall. See, these velocity
profile does not understand the momentum equation right. It is just an approximate velocity
profile. So, we will try to teach the velocity profile in such a way that it is in a way satisfies

the constrains of the governing equation at the wall.

So, at the wall, if you look at the governing equation, so, if you have, let us write the
momentum equation, the boundary layer equation basically. This is the boundary layer
equation. When you consider flow over a flat plate, essentially it is a 0 pressure gradient. So,
this term is not there. Let us try to satisfy this at the wall. At the wall, u=0 right by loosely

boundary condition. At the wall, v=0, by no penetration boundary condition.

That means, you must have the second derivative of u, with respect to y, O at the wall right
which follows from the governing equation. So, this is not a boundary condition that you

directly find out intuitively but, if you want to make sure that the momentum conservation is



satisfied, then that is what you get. So, the remaining what is easy that you substitute these 4

conditions so you will get 4 algebraic equations involving a0, al, a2 and a3.

So, from that, you find out a0, al, a2 and a3. So [ am not going into the details of the algebra

because it is too trivial.
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So, then what you will get out of this is u/u infinity =3/2 y/delta-half y/delta whole cube. So,
the remaining terms will go away okay. Now, at least once you get out of these whether your
algebra is correct or not at least you should check that it satisfies most of the essential
boundary conditions that at y=0, u=0 and at y=delta, u is u infinity. Now, what we will do
with this velocity profile? We will use this velocity profile for evaluating the integral, which

is there in the expression.

So, to do that we will write tau all/rho u infinity square=ddx of integral 0 to delta. Now, you
will write 3/2 y/delta-half y/delta whole cube*1-3/2 y/delta + half y/delta whole cube dy.
With an obvious substitution of variable that is eta=y/delta, you may write this as tau all/rho u
infinity square=ddx of integral 0 to 1, then 3/2 eta-half eta cube*1-3/2 eta + half eta cube d

eta and then multiplied with a parameter delta.

Because dy=delta*d eta okay so change of variable is there. So, important thing is, first of all,
this delta is dependent on X, but this integral evaluation is not dependent on delta. So, you can

take this delta out of the integral. So, it walls down to evaluating some sort of polynomial



expression and then coming to the integral. Again let us not waste any time in like doing this

very simple algebra and simple integration.

Let us say that, out of the integration what you will get? You will get a number. Say, you get a
number k, which comes out of the integral of this entire expression. It is a definite integral,
so, it will come like a number. Now, what is the tau all? Tau all is mu*this one at y=0. So,
that also you may calculate from assumed velocity profile. So, what is your assumed velocity

profile? So, that is this one and you may calculate the first order derivate at y=0.

So that will be 3/2 delta because remaining term will have y, which will be 0 at y=0. So, you
will have mu*3/2delta rho u infinity square is also there in the denominator=k*d delta dx
okay. So, then you can integrate this and once you integrate this, you will get delta as a
function of x. So, let us write the integration.
(Refer Slide Time: 12:37)
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So, you have delta d delta=mu/rho u infinity square 3/2k dx right. So, if you integrate it, delta
square/2=3/2k mu/rho u infinity square x + constant of integration. As we know that, in the
limit as x tends to 0, you have delta tends to 0. That is the edge of the plate, where from the
boundary layer grows. And therefore, you must have ¢=0. So, you see the growth of the
boundary layer is like an initial value problem, where you start with x=0 and whatever

condition is at x=0, all the subsequent conditions for delta may be evaluated.

So, the x coordinate here acts like a time coordinate. As if we have started with time=0,

instead of time=0, it is x=0. And as you march along x, in the positive direction. You see that



the boundary layer grows. So, this is called as a marching problem. So, instead of marching
with respect to time, you are really marching with respect to space or position. So, now you
can find out what is delta/x. So, delta square will be 3/k. We will always write mu/rho as nu,

because kinematic viscosity is what that governs the physical situation.

So, nu by u infinity square X. So, you can see clearly that delta, that is with square root of x,
which we have also seen from the previous analysis like the order of magnitude analysis and
the Blasius solution. Now, if you want to find out how delta/x is scaled. So, basically what
you have to do? You have to divide by x square. So, if you divide it by x square, then one
important thing is we have missed one u infinity here. Because this u should be I mean it is

u*u infinity is this one.

So, somewhere u infinity has to be there. So, one infinity we have missed. So, this u infinity
and this infinity will cancel. So, eventually we will have only one u infinity here right. So, for
evaluation of the tau all, there was one u infinity. This is u infinity that has to be there. Now,
if you divide it by x, so delta/ x square is 3/k*nu/u infinity x. that means delta/x is square root

of 3/k* Reynolds number to the power -half okay.

So, if this is calculated, this comes out to be, this particular number, roughly if I remember
correctly, roughly 4.64. So, see this is somewhat erroneous because if you remember the
Blasius solution, this was high. So, instead of 5, it is coming out to be 4.6 or something like
that. But the important thing is that the scaling behavior is similar. So, the order of magnitude
gave delta/x of the order of Reynolds number to the power -half. The exact solution is like 5*

Reynolds number to the power -half.

Some approximation it is deviated from the exact solution. But, we are not really that much
bothered about this one. This is somewhat disturbing because the approximate solution is
somewhat deviated from the exact one. But, this is what is not our focus. Our focus is the
wall shear stress calculation. We are never expecting that it will give the correct boundary
layer growth but our expectation is that at least integral of the velocity profile will nullify the

error in the velocity profile to some extent and get a better estimation of the wall shear stress.

So, let us calculate the wall shear stress.

(Refer Slide Time: 17:36)



So, if you write the wall shear stress tau all that is 3 mu u infinity /2 delta that is what and
delta you may substitute as a function of x. so, delta is nothing but 3 mu u infinity/in place of
delta, we will write square root of 3/k square root of nu/u infinity x right. So, what we will
get essentially? Say tau all, what is our matter of interest is the non dimensional form of the
tau all. So, the non dimensional form of the tau all is given by the cf, which is the friction

coefficient, which is tau all/half rho u infinity square.

So, you divide this by half rho u infinity square. So, one of the u infinity's get cancelled, then
you are left with there is one mu/rho, that means it is basically something * “Professor -
student conversation starts” (()) (19:26) which one? Sir, x. This x is (()) (19:34). No, just I
am using this expression. So, delta is square root of this one, whatever * square root of x
okay. That is what is substituted here. “Professor - student conversation ends” So, this one

something*nu/u infinity*root of nu x/u infinity.

So, that means cf, is coming out to be soothing * Reynolds number to the power -half. See,
this becomes square root of u infinity, this numerator becomes square root of nu. So, square
root of nu/u infinity x right. So, this constant if it is evaluated, this comes out to be 0.646
okay. And the exact solution, the Blasius solution gives this one as 0.664. and this is really
quite close. So, the error between these 2 may not be that significant for a calculation for an

engineering calculation.

And therefore you see that remarkably although the velocity profile was erroneous, although

the boundary layer thickness was quite erroneous, this is also erroneous but the error has



somewhat gone down. And that is because of using this in the integral form. So, the whole
expectation is that the functions may be inaccurate but, area under the function has area under

the curve that may be approximately the same, despite the error in the functions themselves.

So, this is, this sometimes is called as skin friction coefficient. So, sometimes this is given
with a subscript x. So, cf with subscript x for cf has a function of x and the name of these is
known as skin friction drag coefficient. Why it is so? Because we will later on see that, there
may be other mechanisms of having a drag force on a body. So, here this drag force is
originated out of the frictional action or the viscous action. So, this is given a name of skin

friction drag coefficient.

The subscript x to indicate that it is local friction coefficient. That means as you change x,
this will vary. Now, one is interested at the end to calculate the total drag force on the plate.
So, how do you calculate the total force on the plate.
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To calculate the total drag force on the plate. Basically you have to keep in mind that the wall
shear stress varies locally with x. and it is important to take care of that local variation. So, to
take care of that local variation, what we may consider is, see let us say at a distance x, we
take a small strip on the plate of thickness dx. So, the plate is having some width so, it is

basically there is a strip, which has some width. So, let us say that, the width of the plate is b.

So, the element that we have considered is something like this. And the shaded portion, which

is there, this is where it is exposed to the fluid. And that is where there is a shear stress



between the fluid and the solid. So, how do you calculate that, what is the total shear force on
this element, whatever is the shaded element. So, let us say that dF is the shear force on the
element. So, what is dF? So, tau all is the wall shear stress that *b*dx okay. So, if you want to

find out the total one.

Of course you have to integrate it so, the total F, let us give it subscript d to indicate that it is
a drag force. So, FD will be integral of tau all b dx from x=0 to x=L, where you know that
how tau all varies with x. So that is already known to us. So, Fd let us write integral 0 to L in

place of this one, we will write 3/2 mu/square root of 3/k u infinity/nu/u infinity x*b*dx.

So, again if you consider the form like there will be some numbers based on what is the value
of k, then mu u infinity divided by square root of nu/u infinity b, then just integral of x to the
power -half dx. So, it will become this one. Now, just like the local skin friction coefficient is
a non dimensional representation of the wall shear stress locally. There is also a non-
dimensional representation of the drag force. And that is given by coefficient of drag. So, let
us write what is the coefficient of drag.

(Refer Slide Time: 26:19)

So, the coefficient of drag is given by FD divided by something reference. See, this is a force,
so this should be represented by some equivalent half rho u infinity square that is there times
some reference area. So, what area you will choose here? So, if L is the length of the plate,
b*L. We will see later on the depending on the shape of the body, the area are engineering
conventions of how what reference area should be taken. So, these fundamentally is like

some reference area.



For flow over a flat plate, it is like this b*L, but for different shaped bodies, we will see if the
flow passed a circular cylinder. May be flow passed a aerofoil section. How these reference
areas will change from one to the other? It is nothing very fundamental. It is an engineering
convention that what reference area you choose for designating the coefficient of drag. Now,
here you can write it in like you will get some number times mu u infinity/square root of nu/u

infinity then you get rho u infinity square*you will get a square root of L.

Because numerator square root of L, denominator is L. So, again you will get one of the u
infinity gets cancelled out. So, this is something * Reynolds number to the power -half. But
Reynolds number is based on L. so, this Reynolds number is not based on any local
coordinate but, the total length of the plate. So, this gives the total effect and this coefficient
is just double of this 0.646. So, it is whatever like 0.646*2.

And it is therefore also quiet close to the result that one gets from the exact solution or the
Blasius solution. So, what we get out of these exercise is, we have seen that how by using an
approximate velocity profile, we may estimate how the boundary layer thickness grows with
x, how we calculate the wall shear stress and how we calculate the total drag force and their

non dimensional versions. Again, because this is originating out of a skin friction force.

So sometimes this is given with a subscript CDF, F for skin friction because as I have
mentioned, we will encounter such examples where there will be also other mechanisms of
the drag force not just the wall shear stress okay. Next, we will try to go through some of the
important concepts or important terminologies related to the boundary layer and these
terminologies are displacement thickness and momentum thickness.

(Refer Slide Time: 29:36)
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So, first terminology that we will try to understand is displacement thickness delta star. What
it is? Let us say that, you have a flat plate but there is no growth of boundary layer. So, then
what happens, if you have uniform flow, uniform flow will remain uniform and that means
the plate is having no effect. So, if there was a stream line like this, this stream line would

move parallel to the original direction. So, when you have uniform flow, the stream lines are

actually parallel to the flow direction.

Let us say this is one of such undisturbed stream lines. Now, this is what that does not happen
in reality. In reality what happens? In reality you have the growth of the boundary layer. Let
us say that the boundary layer is growing and the boundary layer is growing like this. So,
because of the growth of the boundary layer what happens, what will happen to the stream
line? This stream lines will originally be parallel to each other but when they come close to

the plate, will the stream line.

So, we have decided or we have come to a conclusion that the stream line cannot remain just
like this. So, it has to get shifted or deflected. Question is, it will be deflected upwards or
downwards. Upwards. So, let us try to see that why it should get deflected upwards. So, let us
say that because of the effect of the boundary layer the stream line has got deflected upwards.
So, this same stream line which was undisturbed now it has got deflected upwards. The

reasoning is very straight forward.

If you consider 2 sections let us say that we consider one section here say section A and

another section here say B. if the flow is steady, whatever is the flow rate through section A



should be the same flow rate through section B. Because, see this black line, this is a stream
line so there cannot be any flow across it okay. Now, if the same flow rate has to be

maintained. See this is the region where the flow is slowed down.

To compensate for that, the stream line should be upwards so that this extra flow + this flow
becomes same as this flow right. So, the stream line has to move upward not downward.
Question is how much does the stream line move upward? Let us say that, we have chosen
such a reference that this is the delta at the given x. Let us say that this shift of the stream line

is delta star. We want to find out what is this delta star.

Nature is not important for us. This is just a rough sketch, what is important is that whether it
is shifted upwards or downwards. Because like we have not having any attention on what
happens across the stream line. Because by definition of the stream line, there is no flow
across the stream line okay. So, let us try to find out this delta star. What would be the basis

by which we may find it out?

That the mass flow rate at the sections A and B must be the same. So, you must have m dot at
the section A same as m dot at the section B. So, if the uniform velocity was u infinity at the
section A it is rho*u infinity*delta*the width. Let us say the width is what? B. the width will
get cancelled in both the sides so let us not just write the width. For B, you see there is one

portion within the boundary layer.

So, that is integral 0 to delta udy, where u is the velocity as a function of y here. Outside the
boundary layer, you have u=u infinity. So +rho integral of delta to delta + delta star*u infinity
dy. Basically that *u infinity*delta star. So, from here if you simplify one more step, what we
get? You will get u infinity*delta=integral 0 to delta udy+u infinity*delta star. This term, you

can also write as integral 0 to delta u infinity dy all the same.

The whole idea is that we want to club these 2 terms together. So, from here you can write
delta star=0 to delta 1-u/u infinity dy by dividing all the terms by u infinity okay. So, this is
known as displacement thickness. So, physically what it is indicating? Physically it is
indicating may be a displacement or a shift in the stream line because of the existence of the

boundary layer. It may also be looked from a different angle.



Let us say that we are trying to consider a case when this is a flat plate with boundary layer
and retardation of the flow close to the wall and we consider an equivalent case where we do
not consider the effect of the wall directly but what we do is, we make a shift of the wall. So,
the new location of the wall becomes say like this. What should be this shift so that this

problem with a boundary layer is equivalent to a problem with a uniform flow.

So, this is a problem with a boundary layer, where we are trying to have the same flow rate
but no boundary layer. That means there will be a uniform flow. So, let us say that the
uniform flow is like this with a velocity u infinity. So, here there is a growth of the boundary
layer so we have our delta as a function of x. Here you do not consider the growth of the

boundary layer, but to avoid that analysis what you do?

You ship the plate a bit upwards because the effect of the boundary layer is, it has the
reduction in the flow rate. So, if you still want to use u infinity, you make a shift of the plate
somewhat so that your effective area of the flow gets reduced. So, that multiplied with u
infinity should give the same as this one. So, let us say that this shift of the plate is A. What is

our constraint? Qur constraint is that the flow rate should be the same.

This is the hypothetical uniform flow; this is the real boundary layer flow. So, the velocity
profile is like this. This is u infinity. So, what is the flow rate here? The flow rate here is
integral of 0 to delta udy. What is the flow rate here? U infinity*delta-a. of course I am just
considering the volume flow rate per unit width of the plate. So, rho*b that term, I am not
considering. So, if you equate this 2, what you will get from here is, what is a? A is nothing

but integral 0 to delta 1-u/u infinity dy.

So, this is nothing but delta star. So, what does it mean? It means that the displacement
thickness also may be looked at as a hypothetical displacement of the solid boundary so that
the remaining flow within the length delta may be perceived as a hypothetical uniform flow.
Still, predicting the same correct flow rate okay. So, the advantage of this is that, sometimes
you do not want to analyze the details of the boundary layer but you just want to have a gross

estimate of the flow rate.

If you know what is delta star, then what you may say is that, within this length, this-delta

star whatever is there, the velocity is uniform. So, it is not that it is actually uniform, it is a



pseudo situation, with which you are matching with the exact situation. What you are not
compromising with is the flow rate prediction. So, the pseudo situation and the correct

situation are giving the same flow rate, that is the basis of this.

Now, although the mass flow rates over the section a and b are the same, but the momentum
flow rates are not the same. And we will see that what is the difference in the momentum
flow rates over the sections a and b.
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So, let us write what is the momentum flux or may be rate of momentum transfer. So, the rate
of momentum transfers at A, what is this? So, what is the rate of mass transfer at A? rho u
infinity*delta, that multiplied by u infinity is the rate of momentum transfer at A. what is the
rate of momentum transfer at B? again one part within the boundary layer, another part

outside the boundary layer.

So, whatever is within the boundary layer, you have rho integral of u*u, that is u square dy
from O to delta + it is basically rho u infinity square*delta star. That is the top portion. Top
portion outside the boundary layer, velocity is u infinity. So, if you want to find out what is
the difference between these 2, momentum flux, rate of momentum transfers at A and B, the

difference of these 2.

So, that you have rho*u infinity square delta-integral O to delta u square dy-rho u infinity
square*delta star is what? Delta star is u infinity-u/u infinity integral of that dy from 0 to

delta. So, one of the u infinities get cancelled out okay. So, when one of the u infinities gets



cancelled out, the next step we can have a simplification, let us go for that simplification. So,
this becomes, first of all this becomes -rho u infinity square delta. So, there is one u infinity

square delta, then there is -1 u infinity square delta.

So, this term gets cancelled out with the first term. So, what remains is rho u infinity-u square
dy from O to delta. Uu infinity from the last term and -u square from the second term okay.
So, now what you see that, this is not 0 right, therefore there is a difference. Now, is this
positive or negative? This is positive, because u infinity is >u. So, u*u infinity is > u square.
So, that means this is actually a representative of the very important fact that, there is a

momentum deficit at the section B.

So, whatever was the rate of momentum transport at the section A, the rate of momentum
transport at the section B is somewhat < that. And this is indicator of how less it is. So, this
you can write as rho*u infinity square, just taking u infinity square as reference. SO, u/u
infinity*1-u/u infinity dy. Just a normalized or non dimensional way of writing is the term,
which is there in the integral. And see, this term in the integral is the term that we have

encountered in the momentum integral equation.

Tau all/rho u infinity square was ddx of this quantity. And this we call as theta, which is also
given as symbol of momentum thickness. So, momentum thickness, that is given by theta.
And what is important is that, this momentum thickness, what it physically indicates? It
physically indicates the deficit in the rate of momentum transport across 2 sections because of

the development of the boundary layer.

That is the physical implication of this. But, mathematically this is expressed just by this
integral.

(Refer Slide Time: 44:38)



i

Sometimes, one also uses a third parameter which is known as the shape factor H, which is
given by delta star/theta. The ratio of these 2. Why it is given a name of a shape factor is
somewhat obvious. The obvious is that, this ratio depends solely on the shape of the velocity
profile. Because, if you see the integrals, this integrals of course they themselves depend on
the shape of the velocity profile but sort of even their ratio also therefore depends only on the

shape of the velocity profile.

Shape of the velocity profile means, u/u infinity as a function of yy delta. That is the shape of
the velocity profile. So, once that shape is fixed, this is also automatically fixed. So, that is
why we call it a shape factor and given a velocity profile, it is possible to determine the shape
factor. Now, the important thing is that we have till now, consider the boundary layer have got
a flat plate and that is one of the very simple cases, but even in this very simple case, we have

not considered one thing that is the effect of turbulence.

We have considered that means implicitly that, the boundary layer develops as a laminar
boundary layer. But, in reality, the boundary layer may have a transition towards turbulence.
And what is the Reynolds number, that is important here? The Reynolds number here is
dependent on the parameter the axial location x. So, you see that as you move along the plate,

this Reynolds number increases.

Beyond a critical Reynolds number, you have the inertia forces dominating so much that a
slight disturbance may trigger the onset of turbulence and then the laminar boundary layer

changes its characteristic to a turbulence boundary layer. May not be abruptly but at least



over a given distance. And the critical x or the critical Reynolds number at which this

transition occurs for flow over a flat plate is roughly 5*10 to the power 5.

So, you see that the critical Reynolds number depends on different geometries. See, for flow
through a circular pipe, the critical Reynolds number was roughly of the order of 2000, there
the reference length was the diameter of the pipe. Here, the reference length is the axial
coordinate. There the reference velocity was the average velocity. Here the reference velocity

is the free stream velocity u infinity.

So, the critical Reynolds number is therefore not a magical number which is true for all cases
like depending on the situation, your reference length changes, you reference velocity
changes and the convention changes altogether. Now, what happens to the growth of the
boundary layer if you have such a transition? To understand that, let us work out a problem

by which we will best illustrate it.

So, just note down this problem that consider the turbulent boundary layer over a flat plate
for which u/u infinity for which u/u infinity is given by y/delta to the power of 1/7 okay. So,
this is the velocity profile for the turbulent boundary layer. So, when you say u, remember
this we are not writing it explicitly but this is the average velocity. This is not the

instantaneous velocity with fluctuations.

So, u/u infinity is y/delta to the power 1/7. This is given for the turbulent boundary layer.
What you have to determine, number one, the CF and CD, that is the local skin friction drag
coefficient. And the total drag coefficient on the plate for the flow over the plate, if the entire
boundary layer is turbulent and number 2, the same things CF and CD, if the boundary layer

undergoes a transition to turbulence at Re critical=5*10 to the power 5 okay.

Then, what is given, given is that at the wall, this is what is given at the wall. We will see that
why this is given at the wall. This is from experiments. This is actually a real data from
experiments conducted by Blasius. So, this is from experiments and for laminar flow, laminar
boundary layer, it is given that CDF=1.328*Reynolds number to the power -half okay. So,
with this problem statement, let us try to work out this problem and this will give us some

idea.



First of all, this is the velocity profile which is again for turbulent flow, it is not possible to
determine the velocity profile exactly. So, this is just a conflict of the experimental velocity
profiles and therefore, it is not a very accurate one. The loss of accuracy is important at some
place and let us see what is the place.
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So, let us first write tau all/rho u infinity square=ddx of integral O to delta u/u infinity*1-u/u
infinity dy. So, this part you may substitute u/u infinity as a function of y/delta and then you
will get this as something*d delta dx that is fine. Substitute u/u infinity as y/delta to all these.
Now, what about tau all? See, if you want to calculate mu du dy at the wall, you see that, that

you cannot calculate using this velocity profile.

So, this velocity profile is not exactly valid at the wall for calculating the wall shear stress.
And that is why, the wall shear stress has to be separately determined from experimental
conditions. And that is what it has been experimentally determined. See, fluid mechanics is
such a subject where you cannot independently go or grow with theory or experiment. You
have to somehow make a good combination of these for understanding the physical

principles.

So, tau all/rho u infinity square, you will have 0.0225*nu/u infinity*delta to the power 1/4.
So, then it is straight forward, you integrate this and get delta as a function of x. so, if you
integrate this, you will get let me just tell the answer quickly, you will get

delta/x=0.37*Reynolds number to the power -1/5 okay. So, once you get delta/x, it is easy to



calculate the CF and C just as we did for the previous cases. So, let me give you the answers

at least so that you can verify later on.

So, Cf will be 0.058*Reynolds number to the power -1/5 and CD is 0.0725*Reynolds number
to the power -1/5 okay. So, these are the answers for the first part of the problem. But, this is
not a very realistic representation why? Because we know that the boundary layer does not
become turbulent from the very beginning. The Reynolds number is based on the local x.
Local x is initially very small so it is always initially laminar and then it becomes turbulent.
So, the real picture may be something like this.
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So, you may have the flat plate in this way. You have first a laminar boundary layer, then it
undergoes a transition to turbulent boundary layer. Let us say that this is the length x critical
over which it is laminar and then beyond that, it is turbulent. So, the question will be that,
what is the length of your plate? If the length is > x critical, how do you find out x critical? X

critical is given by u infinity x critical/mu is 5*10 to the power 5, that is Re critical.

So, given u infinity, you can always find out, what is x critical. If your length of the plate is >
x critical, then in reality, there is a great chance that the remaining flow is turbulent. So, your
actual drag force is what if you say calculate the total drag force has artifact or outcome of
that, the entire boundary layer is turbulent, there is an error because of the presence of the

laminar part. So, that error we have to nullify.



So, what we can do? We may consider that it is F drag force, that is the drag force width from
x=0 to x=L considering it as fully turbulent. Then subtract the drag force from x=0 to x=x
critical for turbulent and add the drag force for that part for the laminar okay. So, as if the full
thing was turbulent, then you subtract the turbulent part from the initial and at the laminar

part okay.

And you have to keep in mind that, when you are writing the corresponding the CDs, so, this
will be CD*half rho u infinity square *b*L. Here, it will be CD*half rho u infinity square b*x
critical. And here, also it will be the same. CD*half rho u infinity square b*x critical. The
difference is that, in one case the Cd is the laminar Cd, in another case, this is the turbulent

CD. So, this is turbulent CD, this is the turbulent CD and this is the laminar CD.

In the problem, already it is given what is the expression for the laminar CD, you have to be
careful in place of L, you have to now use the x critical as the reference length. And then, if
you make a simplification of this, the net drag force is the F drag force actual/half rho u
infinity square*b*L. It is the net CD and the answer of this will come out to be 0.0725

Reynolds number to the power -half-1740/Reynolds number. This is the answer to this.

So, if you just substitute and make a simplification, just check that whether you get this final
expression. So, what this final expression says that, there is a correction because of a part of
the boundary layer being laminar and not the entire boundary layer being turbulent. And this
the expression of the composite CD that takes care of the fact that a part is laminar and then it

is turbulent.

So, with this we stop our discussion today and in the next class, we will start with the
discussions on boundary layer, where you have the effect of the pressure gradient. Till now,
we have considered the boundary layer without the effect of pressure gradient. And boundary
layer with the effect of the pressure gradient, we will start discussing from the next class.

Thank you.



