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Boundary Layer Theory

We will start discussing on the boundary layer theory today. And before going into the theory of

the boundary layers, let us briefly recapitulate, what is the boundary layer? We introduced this

concept qualitatively in one of our introductory lectures, and just to take it up from there we take

this example.

(Refer Slide Time: 00:40)

That you have a flat plate, the plate is confronting a free stream of fluid with a velocity of say u

infinity, now when this fluid is coming in contact with the plate, what is happening that is what

we are interested to see.  Clearly, when we consider say one section,  and we go further  and

further away from the plate, the physical phenomena tend to get changed. How it tends to get

changed?

Adjacent to the wall say if you consider a fluid element which is adhering to the wall just as

marked in this figure, this fluid element is stationary relative to be plate by the no slip boundary

condition. As you go little bit away from the plate on the same vertical section, you see that you



may have fluid elements which are subjected to the slowing down effect of the wall, but not as

severely as the wall aerating fluid layer.

Because this fluid element is somewhat away from the wall, so on the top of it, it has a faster

moving layer, and at the bottom of it, it has a slower moving layer. So the net effect is that it is

slowed down, but not to that extent as the fluid element adhering to the wall, so it will have some

sort of a velocity. Now if you go further away, then you will find that there are fluid elements

which are further away from the wall.

So they are slowed down by the wall but not explicitly but implicitly, how implicitly they have a

layer at the bottom which is moving at a slower pace and which is closer to the wall, then the

fluid elements which are above that and which are moving faster. So as a consequence as a

competing consequence what happens is this fluid layer tends to move at a velocity which is

somewhat larger than the velocity of the layers which are there at the bottom.

In this way, the velocity increases till one may reach a point where we reach a point is a question

that  we will  see that  one maybe points  somewhere  where  the velocity  is  almost  equal  to  u

infinity. And let us say that we are happy with the location where it is 99% of u infinity, it is as

good as  u  infinity, and beyond that  the  velocity  virtually  does  not  change,  beyond that  the

velocity remains almost the same.

So if you join the tips of the velocity vectors at this location, this is what you get as the velocity

profile at this location. These are certain terminologies that we introduced earlier, and we could

also  qualitatively  understand  that  despite  not  being  in  contact  the  plate,  you  will  see  that

somehow there are fluid elements which are feeling the effect of the plate. The fluid element

directly in contact with the plate is supposed to feel the effect of the plate.

Others are not directly in contact with the plate, but to some extent within a distance from the

wall they are feeling the effect of the wall. And how they are feeling the effect of the wall? It is

through the fluid property viscosity, which is propagating the message of the wall from the wall



towards the outer fluids. Now if we draw the same thing that is the velocity profile description at

a section further away from the inlet, then what we see here the velocity is 0.

Then in the vertical sections as you move above, what you see? The qualitative picture is same as

what is there in the first section, but quantitatively what you expect that at this layer the velocity

should be even < what it was in the corresponding previous section. The reason is very, very

obvious that now more and more fluid is in contact with the plate, so the effect of slowing down

by the plate is more and more severe.

So you have velocities which are less at a given vertical section location, in this way here also

the  u  infinity  condition  will  be  reached,  but  the  distance  over  which  it  will  reach  will  be

somewhat more than the distance over which it was reached in the previous section. Let us say

somewhere here the u infinity condition is reached, beyond which the velocity remains the same.

So you can clearly see that if we want to demarcate the characteristics of the velocity profile we

are having 2 important characteristics.

One characteristic is where the velocity profile has it sort of a gradient, and another characteristic

is that the gradient cease to exist. So if we demarcate these 2, one way of demarcating is to find

out, to what distance this velocity profile exists, let us say that to this distance the velocity profile

exists for this section, and for the next section maybe this distance the velocity profile exists that

means gradient in the velocity profile exist.

So in this way the plate maybe as large as you want along the axial direction, but like these 2

representative’s sections are good enough to have a sort of a physical picture. So if you want to

figure out that what happens subsequently of course this physically this type of behaviour, it

continues along the plate, so as if like this effect of the wall gets more and more propagated.

Now it is possible therefore, to have a region within which the velocity profile has a strong

gradient, so that the effect of the wall is felt very explicitly.

And a region which as if does not understand the effect of the wall, and to demarcate that one

may just draw a locus of this mark points, because this indicate the distance from the wall up to



which the viscous effects are explicitly felt. So if you draw the locus of such thing this gives the

imaginary line, this line is not something is which is existing in the flow field, it is just for our

conceptualization that we are having such a demarcating boundary.

So this demarcating boundary demarcates the flow domain into 2 parts, 1 part adjacent to the

wall where wall effects are important, or so to say the slowing down effect of the wall or the

viscous effects are important, and outside this viscous effects are not important. It does not mean

that the fluid outside this has no viscosity, simply the effect of viscosity is not manifested in the

form of shear stresses, because of lack of existence of velocity gradients.

So  within  this  layer,  the  viscous  effects  are  sustaining  shear  stresses,  and  transmitting  the

disturbance of momentum from one layer to the other, so that is what is called as momentum

transfer. So the layer where this physical behaviour is occurring is known as boundary layer, and

outside  the boundary  layer  is  in  this  case  is  the behaviour  of  the  free stream,  and this  line

therefore,  is  a  demarcation  between the boundary layer  and the region outside the boundary

layer, and this is known as edge of the boundary layer.

So boundary layer is just a concept which helps us in demarcating the flow domain into parts

where the path that we are focusing on that the boundary layer is an interesting part, because that

is where the viscous effect is explicitly felt. And the entire purpose of the boundary layer theory

is to have a detailed understanding of what happens in this layer, so the whole objective is there

is a scientific objective, scientific objective is we must understand.

So if say if we call that this is x direction, and the transverse direction is y direction then at a

given x, there is a thickness of the boundary layer which we call as delta. So we see qualitatively

that as x increases delta also increases, but the question is how thick or how thin the delta is, so

that is one of the very interesting things. Because that will dictate us that what is the extent

within which this velocity gradient exists.

From an engineering point of view what is important? From an engineering point of view what is

important is what is the total shear force or the shear stress that is acting on the wall, and to know



that you must have a detailed picture of how the velocity gradient are shaping up within the

boundary layer. So from an engineering point of view the shear stress is important why? Because

it will give rise to your drag force.

And based on the drag force one may intelligently design engineering systems, where you have

interactions between fluids and solids, and not only that it is also possible to have a clear idea of

what is the extent over which the wall shear stress effects are predominant.  So for all these

reasons it  is important that we emphasize on the characteristics of flow within the boundary

layer,  and  the  studying  of  the  boundary  layer  theory  has  one  of  those  things  as  important

objectives.

So we start with the boundary layer theory by considering simple case, and we will adhere to that

simple case in a major part of this chapter that is we will consider the density=constant, and we

will consider steady flow, not that there is no relevance of boundary layer theory for variable

density or unsteady flows, yes they are definitely. But for an introductory course this is what is

going to give us a lot of insight on the very, very fundamentals of the theory.

So as usual what we will consider we will consider that our basic governing equations which we

have  developed,  these  governing  equations  will  be  the  basis  with  which  we  will  start  the

analysis. So what are the governing equations, first the continuity equations is there, so we will

not write it in the index notations is just a 2-dimensional description, so you will consider a 2-D

flow also with velocity component as u and v.

So u is u1, v is u2, so we will write the continuity equation under these assumptions you have. So

let us write the continuity, this is the continuity equation, we will write the momentum equation

subsequently, but let us first start looking into the continuity equation. Now when you look into

the continuity equation, what we are trying to guess from the continuity equation, first of all we

will try to have a picture on the order of magnitudes of different quantities.

That means what is the order of magnitude of u? And what is the order of magnitude of v? This

is very important because before getting into the exact quantification order of magnitude will



give us an idea of the range of values that this may take. So for that one important style of

analysis is known as order of magnitude analysis or scaling analysis, so we will look into that

scaling analysis or order of magnitude analysis.

This is a very powerful tool in scientific analysis because we will soon see that without solving

the equations, we will have a fair idea of the order of magnitudes of various quantities which are

governing the physical  behaviour. So how we do that?  To do that  we basically  refer  to  the

governing equations, and we refer to the characteristic values of various parameters appearing in

the governing equations. So what are the characteristic values?

The characteristic values are called as so called scales, so when we have say this du/dx type of

term, we are looking for so this term if you write in terms of an order of magnitude, order of

magnitude is given by this type of a symbol, this one or maybe order of either way. So order of

this one is what order of this one is order of u/order of x so to say, so order of u means what is

the maximum u so to say, and order of x is, what is the maximum x?

So first  of  all  x  is  like  it  is  apparently  mathematically  it  is  unbounded towards a particular

direction, and these type of problem is physically like a marching problem that means you start

marching along the plate as you march further and further you see that the boundary layer is

growing and growing. So if the plate was at infinity maybe it would have grown, may not be

mathematically exactly in the same fashion.

Because maybe initially it is laminar but after some distance the boundary layer may become

turbulent, because the Reynolds number here is defined on the basis of the characteristic length

scale which is the axial length scale. As you go further and further, as your axial length scale

becomes more and more there may be a place where the location where the Reynolds number is

so high that slight disturbance will trigger a turbulence.

So qualitatively the boundary layer will grow but quantitative manner in which it will grow will

change, but whatever it is here we are focusing on the laminar boundary layer, for turbulent

boundary layer we will separately have some consideration although not in details, but at least



we will have some consideration. But irrespective of the way in which the boundary layer grows,

the growth of the boundary layer will be dictated in a strong way by what is the total length of

the plate.

Because  the  characteristic  Reynolds  number  here  that  you are  looking for  a  boundary layer

description  is  this  one,  rho  the  characteristic  velocity  u  infinity*L/mu  or  in  terms  of  the

kinematic  viscosity  u  infinity*L/nu,  where  nu  is  the  kinematics  viscosity.  Therefore,  the

characteristic length which dictates the problem is the length of the plate here as an example, for

internal flows like flow through pipes and channels.

What  we have seen is that it  is  like say if  you have a parallel  plate  channel  is  the distance

between the plates or the depth that is the important characteristic length scale, whereas here it is

the axial distance. So for a flow through a channel or a pipe the axial length is not an important

characteristic length, but here the axial length is an important characteristic length. So the scale

of x is the maximum x and that is L, what is the scale of u? u infinity.

So the scale of the first term is u infinity/L okay, what is the scale of the second term see it again

requires the knowledge of the scale of v and scale of y. What is the scale of v? We do not know

directly, but let us say that the scale of v, we may estimate that scale of v is the maximum v and

which exists maybe at so-called at the edge of the or outside edge of the boundary layer. Let us

give it a name some names of say v infinity.

There is nothing as such physically v infinity, but just for a nomenclature say v infinity. And

what is the scale of y delta right. Now look at the governing equation there are 2 terms, these 2

terms are somehow adding an effect that the net result is 0 that means each of these terms should

be of same order of magnitude, and one term would be of opposite sense than the other. So that

they get nullified, what we mean by this?

So if this is like 10 meter per second/1 meter, this cannot be 1 meter per second/1 meter, because

then these 2 cannot cancel each other, to cancel each other they must have the same order of

magnitude, and if they cannot and cancel each other, then the result cannot be 0. So when we talk



about order of magnitude, see this is what we are looking for is the velocity 1 meter per second

order or 10 meter per second order or 100 meter per second order.

If we say 1 meter per second order we do not literally mean that it has to be 1 meter per second,

it could be 1 meter per second, 2 meter per second, 3 meter per second like that. But order of

magnitude wise it is like a sort of a single digit meter per second something like that, if we

express it in a single digit. So if it is order of 10 meter per second it might be say with anything

between 10 to 99 meter per second.

Of course there is a fuzziness, what is the fuzziness? If it is 99 meter per second, I would say that

it is much closer to 100 meter per second than 10 meter per second. So these kind of fuzziness

exists, but the important thing is it is your perception of how you get rid of the fuzziness and get

a correct description of the values. The fuzziness that we found is because of the use of the

decimal system, so it has nothing to do with the order of magnitude analysis.

It has something to do with our way of expressing the order of magnitude, so if we do not have

any specific bias towards the system of representing the order of magnitude, at least what we can

say from this relationship that you must have u infinity/ L of the order of v infinity/delta, so that

these 2 terms somehow nullify their effect, and from here we get v infinity of the order of u

infinity*delta/L okay.

So when we have this we should try to have an estimate of the relative estimate of v scale with

respect to u scale, and the we are saying that what is the parameter that is governing it is delta/L.

So we will we may have all sorts of possibilities, so in a boundary layer you may have delta >>L

delta <<L, even delta of the order of L all those are plausible boundary layers, but the theory that

we are going to develop we will develop for a special case.

And we will see that what is the relevance of the special case, the special case is delta/L is very,

very small that is one of the important assumptions of the boundary layer theory. But again see as

if we are forcefully doing delta/L is <<1, when there is a physical problems say you are a person



working in an industry you are always entitled to say that I do not understand what is delta, so

delta/L is <<1.

What is this I mean how from the system parameters can I tell that whether delta/L is <<1 or not.

So  there  must  be  something  from the  system description  system parameter  description  that

should tell us whether delta/L is larger or smaller or whatever, but we will now go through an

exercise  which  will  tell  us  how the system parameters  will  be linked with the smallness  or

largeness of the delta/L.

So the important assumptions, the first assumption that we are making is that delta/L is <<1 that

is small okay. Now with this understanding, let us go to the momentum equation, before going

into the momentum equation along the x direction which is the dominating effect here, we will

first look into the momentum equation along the y direction. So y momentum equation, since

density is a constant we will divide both the sides of the momentum equation by the density.

So that the viscosity will be converted to kinematics viscosity, so we will have again we are not

considering an effect of body force, but if there is somebody force that may be added. Now our

job is to estimate the order of magnitudes of various terms, let us consider term by term this term

first term, what is the order of magnitude of this? So order of magnitude of u is u infinity v is v

infinity/L, this one v infinity square/delta, this one 1/rho see this is some pressure scale by some

length scale.

So the question is  what is  the appropriate  pressure scale  that  we do not know, so by lot  of

experiments it  was understood that in such cases where delta/L is <<1, the pressure scale is

governed by the kinetic energy scale. So that is almost like an inviscid flow, so that means the

pressure scale if we call as delta p, then delta p is of the order of rho*u infinity square, whether

this scale is correct or not we will justify at the end.

That  whatever  scale  we  are  assuming  maybe  experiments  give  that,  but  the  question  is

theoretically it has to be consistent with the remaining part, we will do that but for the time being

we assume that the pressure scale is governed by this kinetic energy scale. So rho u infinity



square, see when we wrote the scale we did not care whether we write 1/2 rho infinity square or

rho infinity square, because objective of the scale is not to give the exact value, it is the order of

magnitude.

So with the 1/2 order of magnitude does not change, so rho u infinity square/delta. These terms

say the first term nu, what is this you tell the first term v infinity/del square right, and this term is

nu v infinity/delta square, all are order of magnitude. Because all these terms are like d/dx or

dv/dx, d/dy or dv/dy like that. Now without doing any analysis we can straight forward say that

if we assume delta/L is <<1 that is delta <<L, then this term is much much more dominating then

this term.

Because here division by delta square at division by L square that means in the first cut analysis

without thinking about anything else, whenever delta/L is <<1, the first term here is much much

more insignificant as compared to the second term and therefore, may be neglected. So that is see

it does not matter, whether it is v or u or whatever, it is the denominator that is what is creating

the difference.

And therefore, we may have a general conclusion that no matter of whatever variable if delta/L is

small  that  is  delta  <<  L.  And  see  these  terms  are  like  the  first  term  is  axial  diffusion  of

momentum disturbance physically, and the second term is transverse diffusion of momentum

disturbance.  So  we  will  say  that  the  axial  diffusion  term  is  negligible  as  compared  to  the

transverse diffusion term that is the way in which we speak this in words.

Now so that is one of the important things we will keep in mind not just for this equation, but for

even the x momentum equation we will apply the same logic. So at least we could get rid of one

of the terms in terms of the analysis, that well this term will not be important so long as the other

term is there. Now let us try to make an assessment of the order of magnitudes of the different

terms in the left hand side, and the important terms in the right hand side.

First  of  all,  you  may  estimate  v  infinity  with  u  infinity*delta/L,  here  also  like  that  u

infinity*delta/L. So what you come up with is the order of magnitude of these terms eventually



becomes u infinity square delta/L square, and even this term is also like that right okay. So we

may conclude see order of magnitude of 2 terms if they are the same, adding then the order of

magnitude becomes either of them not that you add so if it becomes 2 it makes no difference, 2

does not change the order of magnitude.

So the left hand side order of magnitude is u infinity square delta/L square, and what is the

physical meaning of the left hand side, these are like inertia terms, so these are like because these

are like the if  you recall,  these are nothing but the advective components  of acceleration or

convective components of acceleration. So this like represent the inertia of the flow.

(Refer Slide Time: 30:51)

Keeping that in mind let us write the ratio of the inertia terms and the pressure gradient term

order of magnitude, this is of the order of inertia term is of the order of u infinity square delta/L

square, and pressure gradient term of the order of u infinity square/delta. So this becomes of the

order of delta/L whole square right. Therefore, if delta is <<1 see so many simplifications are

possible just by this consideration, so this becomes one of the very key considerations.

That means this is a negligible term. So the first conclusion is there in the y momentum equation,

the inertia terms are negligible in comparison to the pressure gradient term. Then let us consider

the ratio of the dominant viscous term by the pressure gradient, so that is nu*v infinity/delta



square/u  infinity  square/delta,  so  what  is  this?  v  in  place  of  v  infinity  we  will  write  u

infinity*delta/L nu u infinity delta/L delta square*delta/u infinity square.

So that becomes delta/ sorry delta is gone 1 by Reynolds number right, so 1/ReL. So we will also

consider that the Reynolds number is large, and we will see very interestingly that is not an

additional consideration it should follow from the consistency of this assumption, but for the

time being we will assume that because we may only show from the x momentum equations the

relationship between delta/L and the Reynolds number.

So one of  the important  consequences  of  considering the Reynolds  number small,  Reynolds

number large will be delta/L small, so delta/L small this automatically implies that the Reynolds

number is large, so for the time being let us consider it as an independent assumption, we will

not assume that this is the truth. Because we will show that this is the truth or if dealt/L is <<1, so

for the time being it is as if another independent assumption.

We will  see  subsequently  that  is  not  an  independent  assumption,  it  is  relationship  with  the

consideration of delta/L. See I am not just now I have told that we will show that there is a

relationship between large Reynolds number and delta/L is small, so we have to wait till that

right. Now when Renault number is large, so that means that the viscous term by the pressure

gradient term is small that means whatever will be dominating in this equation if at all something

dominates is only the pressure gradient term.

So from this the important  conclusion is that  within the boundary layer, so all  this  order of

magnitude estimates we are writing within the boundary layer, so now as if we were zoom or the

focused attention is the boundary layer, so then that will give rise to this=0 right, because all

other terms are non-dominating. And therefore, this gives rise to a very important conclusion,

what is the important conclusion? Pressure is not a function of y within the boundary layer.

What are the considerations that we used for this? The considerations that we used for this are

delta/L <<1 and Reynolds number large, these are the 2 considerations that we used. Now one of

the important things that we should mention at this stage is that this x and y coordinates are



generic, for flow over a flat plate you have natural choice of x and y that means plate is a flat

one, so along it you can orient a linear x direction and perpendicular to that y direction.

But if you have flow over a curved boundary, so if you have say flow over a boundary like this,

so  then  x  is  written  in  terms  of  the  curve  linear  x,  and  maybe  local  co-ordinate  which  is

orthogonal to that, so the curve linear one will become like a tangential co-ordinate x at a given

point, that means it is as if like a tangential x and our normal y at each and every point. So the x

and y direction continuously may shift as you are moving along the curve.

So the x and y are generically called as stream wise directions and cross stream wise directions

something like that, so these are changing continuously. So in the boundary layer we use x and y

co-ordinate for all the cases not just for flow over a flat plate, flow over a flat plate we just give

as an example, so it is not the only case where the boundary layer theory will be relevant as we

understand.

Because many of the surface over which flows occurred in engineering are not like flat surfaces,

so you may have curved surfaces like, so you may have wings of airfoils and so on. Obviously, if

you  have  any  curved  surface  it  is  possible  to  have  sort  of  different  way  of  describing  the

coordinates, but this x and y co-ordinates will preserve in the sense that we have just discussed,

and this we call as boundary layer coordinates.

So boundary layer coordinates are these generic x and generic y, so it is not that any orthogonal

x, y you choose or any constant x, y you choose. It has a special meaning that is locally at a

given point, if you want to assess what is happening with the boundary layer, then along the

surface that means tangential to the surface at that point is x, and perpendicular to that is y, and

that may vary from one point to another if the surface is curved.

So from the y momentum equation whatever we get, you have to remember that this y is the

generic y co-ordinate that we are talking about. Next we come to the x momentum equation

which  should  hold  in  some  sense  the  key  towards  assessment  of  the  behaviour  within  the

boundary layer.
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So x momentum equation is that u del u/del x+ v del u/del y-1/rho this one, so let us write the

order of magnitude of different terms we have now been familiar in how to write those. So what

is the order of magnitude of this u infinity*u infinity/L, so u infinity square/L, this v infinity*u

infinity/delta, this one -1/rho the delta p scale that is rho u infinity square/L, this term okay - is

not  important  for  order  of  magnitude,  then  this  term nu u infinity/L square,  this  term nu u

infinity/delta square.

And again just by previous consideration, we know that this term will be << important than this

term. Now let us pay a lot of attention to the pressure gradient term, see what conclusion we got

from the y momentum equation? The conclusion that we got is that the pressure is not varying

with y, and y is the direction along which there is a change in behaviour because of the existence

of the boundary layer.

So that means we can say that the pressure variation within the boundary layer is not important,

what it means is that whatever is the pressure gradient that is acting on the flow is because of the

pressure gradient that is imposed in the outer stream or the free stream by whatever mechanism.

And what is the importance of the outer stream or what is the simplification that we have for the

outer stream. The outer stream is like an inviscid flow.



So the outer stream is like an inviscid flow that means what? The outer stream is like an inviscid

flow that means you may use the equations for inviscid flow for the outer stream. So for the

outer stream by using the equations of an inviscid flow, if you find out what is the pressure

gradient, the same pressure gradient is imposed on the fluid within the boundary layer. And that

means the correct scale of pressure gradient should be rho u infinity square.

Because that comes from the inviscid flow analogy, if you neglect the potential energy part the

delta p will be of the order of rho u infinity square. For example, if you use the Euler equation or

maybe they Bernoulli's equation when rho is a constant that is what you get. So the important

understanding is that this is consistent with the assumption of the pressure scale delta p of rho*u

infinity square.

So if these conclusions were not consistent that means that assumption was not correct, so that is

the first thing. The second thing is p in this problem could be a function of x and y, now p is not a

function of y. Therefore, p is a function of x only, therefore, a very important thing is here we can

write this as dp/dx, going one step forward it is dp/dx where it is dp/dx outside the boundary

layer.

Because we have just seen physically that the implication of this one implies that whatever is the

pressure  gradient  which  is  existing  outside  the  boundary  layer,  this  boundary  layer  fluid  is

subjected to the same pressure gradient. So that means in terms of symbols we can write this as

good as dp infinity/dx where infinity stands for the outer stream that is the notation okay. So that

is about the pressure gradient term.

Now we will look into the other terms, so what are other terms? So the other terms you see when

you have v infinity here you can substitute the v infinity in terms of u infinity, so this is of the

order of u infinity*delta/L, so you can see that combining these terms each of the terms is of the

order of u infinity squared/L. So the order of the left hand side which is the inertia term is like u

infinity squared/L okay. Now what we will do with these orders, we will very soon see with an

example.



But  before  looking  into  that  example,  let  us  summarize  the  boundary  layer  equations.  So

boundary layer equations are simplified versions of the Navier Stokes equation which we feel

that are valid within the boundary layer.

(Refer Slide Time: 43:38)

So boundary layer equations that is the summary of the equation, first equation is the continuity

equation that is very important that has to be there, again when we are writing the boundary layer

equation under the assumption that we have already described, x momentum equation okay. If

you feel always write the y momentum equation like this, but it is not always this is ready to

explicitly write this, because its effect is already inbuilt in the simplification of the x momentum

equation.

So conventionally when people ask that what are the boundary layer equations usually people

refer to these 2, not that the y momentum equation is not present it is there but its implication has

somehow been inbuilt in the x momentum equation. What are the assumption that we consider

for these? other than rho=constant and the steady the special boundary layer assumptions delta/L

is <<1 and Reynolds number is large >>1.

And so that now the question that we will like to answer is that are they thought of equivalent

does one follow from the other or what they are equivalent to each other or not, that is the

question that we would like to answer. When we like to answer the question, before answering



the  question  we  have  to  keep  in  mind  that  this  sort  of  relationship  should  come  from the

description of the system, and the description of what is happening within the boundary layer.

See  the  Reynolds  number  is  a  system  scale  description,  this  does  not  understand,  what  is

boundary layer and so on, whereas this is related to the boundary layer thickness. So if we sort of

describe an equivalent between these 2 we will achieve our first objective that from the system

scale variation, we will have an estimate of how thick or how thin the boundary layer maybe. So

to do that we will take that the special example of flow over a flat plate.

(Refer Slide Time: 46:26)

So let us take an example of flow over flat plate, special case flow over a flat plate. First of all,

what is our objective is to find out what is this dp infinity/dx okay, let us consider the outer

stream. See the outer stream the free stream flow is u infinity, so the velocity field is like u

infinity i in the outer stream, the outer stream u is u infinity i, you can clearly understand that this

is an irrotational flow, because no gradient in the velocity.

So when this  is  an irrotational  flow, we have discussed earlier  that an irrotational  flow may

remain irrotational if there are no viscous effects. So outside the boundary layer, so this is, what

is  the  importance  in  conceptualizing  the boundary layer, outside  the  boundary layer  viscous

effects are not important. And therefore, the behaviour is like an inviscid one, so a flow which

was irrotational will remain irrotational eternally, because of this effect.



Of course we forget about other possible effects which might make the flow rotational like the

Coriolis force and so on, those are not important in this context. So if you have that as a situation

that means outside the boundary layer you have inviscid irrotational flow, so it will be when you

have an irrotational flow outside the boundary layer that means if you have also density=constant

you may use Bernoulli's  equation between any 2 points  where the points are located  at  any

location but outside the boundary layer.

Within  the  boundary  layer  you cannot  use the Bernoulli's  equation  that  you have  to  clearly

understand, but outside the boundary layer you may by considering these cases. So when you use

the Bernoulli's equation that means you have p+1/2 rho u infinity square is constant in the outer

layer, forget about the potential  energy difference that is  not important  here.  If the potential

energy difference is important you include that in p and call it as a Piezometric pressure.

Now if you differentiate that with respect to x, so this is p infinity this is p infinity outside the

boundary layer, so dp infinity/dx while we are doing it  we require  that in the x momentum

equation. So dp infinity/dx +rho u infinity du infinity/dx=0 right, now we have u infinity as a

constant here, it  is not changing with x. So u infinity may change with x, because of what?

Because of one of the things is the curvature of the boundary.

Because of the curvature of the boundary you may have a gradient of pressure, and you may

have a gradient of the free stream velocity, but for a flat plate there is no effect of the curvature.

But there is an effect of the curvature if you have flow over a sphere or a cylinder we look into

those examples later. So there the curvature will introduce a pressure gradient, and that pressure

gradient will imply that there will be also u infinity gradient so to say.
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But here you have u infinity gradient is 0, u infinity is constant for flow over a flat plate, so du

infinity/dx=0 which implies the dp infinity/dx=0. So for flow over a flat plate the dp/dx is 0, so

when you have dp/dx=0, then you are left with your momentum equation with this one okay. So

if  you write  the order  of  magnitude  of  the different  terms  here,  the  left  hand side  order  of

magnitude is u infinity square/L, and the right hand side is nu u infinity/delta square right.

If this equation has to be important then order of magnitude of left hand side and right hand side

has to be the same, otherwise these terms cannot nullify each other.
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And therefore, the important conclusion that we have from that consideration is that u infinity

square/L is of the order of nu u infinity/delta square, so you may write delta square/L of the order

of nu/u infinity which implies that delta/L whole square if you divide both sides by L is of the

order of 1/Reynolds number right that means delta/L is of the order of Reynolds number to the

power-1/2 okay.

So see this is a remarkable thing, because this is a very, very important observation or conclusion

that we arrived at no cost, without solving any equation, without going into a computation of

equations or numerically or whatever without going into any sort of implication just by looking

into the order of magnitude. And we later on see that why this is so important by toiling very

hard at the end we will come up with an expression.

After when we solve the questions we will  come up with an equation delta/L equal to some

constants C into Reynolds number to the power-1/2. And therefore, disregarding that effect of the

constant C, the dependence of the Reynolds number will be still the same what we get from such

simple analysis, and that is what is one of the important powers of this orders of magnitude

analysis. So the important conclusion that we get from this order of magnitude analyze this is

very interesting.

What is that if delta is <<L that assumption is consistent with Reynolds number is large, because

if Reynolds number is large then only you have delta/L<<1. So these are perfectly equivalent that

answer now we have given, so that means what are the assumptions under which the boundary

layer theory is valid or either delta/L <<1 or equivalently Reynolds number is large. But we will

always say that Reynolds number large is a more fundamental way of looking into it.

Because an analyst who does not know the boundary layer will, or who does not want to go into

the details  of  the boundary layer  thickness  will  always be interested  about  the system level

parameters, and Reynolds number is a system level parameter, if you know the length of the

plate, if you know u infinity, if you know what is the fluid and its properties, you can estimate

what is the Reynolds number.



And based on the Reynolds number, you can come up to the conclusion that whether this theory

that you have developed is valid or not, so you do not have to really deal with delta/L because

you know implicitly that if the Reynolds number is large delta/L has to be small. So these are

equivalent considerations. The other important consideration which does not come for flow over

a flat plate, but may come for flow over a curved surface which we will see subsequently is that

is this boundary layer going to grow monotonically.

The question is that this type of growth of the boundary layer monotonically will not always be

the situation it will depend on the pressure gradient in the flow, for flow over a flat plate the

dp/dx is 0, so it will just grow like this monotonically. On the other hand, if you are considering

curve boundary there are 2 possible cases where you are having dp/dx>0 and dp/dx<0. We have

discussed  earlier  that  dp/dx>0  is  sort  of  considered  as  an  adverse  pressure  gradient  in  the

direction of the flow.

It tries to decelerate the flow, and it might so happen that the deceleration effect is so strong that

the flow actually might take place in a reverse direction close to the wall, because wall has an

effect of slowing down, and on the top of that as it like there is a dead person under pressure

gradient is shooting a gun on that dead person. So wall is like slowing it down very severely, and

on the top of that there is an adverse pressure gradient.

So the poor fluid element which is very close to the wall cannot sustain all these resistances and

may have a reverse directional motion, and then this monotonic growth of the boundary layer is

disturbed that situation we called as boundary layer separation. We will look into that in a more

physical way subsequently, but important thing that we will understand is that if such a boundary

layer separation occurs then the boundary layer theory is not valid.

So what are the important assumptions for validity of the boundary layer theory, one is like the

Reynolds number is large which is of course equivalent to delta/L small, and number 2 there is

no boundary layer separation okay. So with this understanding what we will do is we will just go

on one step forward,  and see that  whether  we may calculate  the wall  shear  stress from this



description.  So let  us  see  what  is  the  wall  shear  stress,  wall  shear  stress  is  what  is  a  very

important thing, because it is one of the important engineering requirements from the analysis.
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So what is the wall shear stress? The wall shear stress is the mu*del u/del y at the wall y=0, so

what  is  the  scale  of  the  wall  shear  stress?  What  is  the  order  of  magnitude  of  this?  mu*u

infinity/delta right. So important non-dimensionalization of wall shear stress is what? We have

seen it earlier in an example when we are dealing with Navier Stokes equation that is the friction

coefficient Cf=tau wall/1/2 rho u infinity square.

So order of Cf is tau wall/rho u infinity is square, forget about the 1/2 because of the order. So

that means this is mu u infinity/delta/rho u infinity square, so Cf the order is mu/rho, mu/rho is

nu the kinematics viscosity, see the kinematics viscosity is what is the governing the picture that

you can see, nu/u infinity delta. Now you know how delta varies with x, so delta square/some

local x will be what? Will be nu/u infinity from this one just replace L with x, local x.

So we are now trying to find out that at  some local x that is now our length L, so some x

somewhere what is the corresponding wall shear stress. So delta square/x is this one, so we can

write  replace  delta  with nu/u infinity*square  root of nu x/u infinity, so Cf scales  with what

1/square root of u infinity x/nu right, so Cf scales with Reynolds number to the power-1/2.



This is also a very important thing, and we will see later on that if you exactly evaluate the

expression it will be Cf=some constant into Reynolds number to the power-1/2. So dependence

of all the important quantities on Reynolds number may be obtained in this way. So let us stop

for this lecture, and we will continue in the next lecture, thank you.


