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Introduction to Turbulence (Contd.)

In  our  previously  lecture,  we  were  discussing  about  some  of  the  important  statistical

characterizations of turbulent flow and we will just continue with that.
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We were discussing about the correlation coefficient towards the end of the previous lecture and

that we defined as follows. We have to keep in mind here that this is not like the most general

definition of a correlation coefficient but this is a special type of correlation coefficient which we

call as autocorrelation coefficient. So what is autocorrelation coefficient? If you have a random

variable say at some instant of time.

Here we are talking about some instant of time at a given location and the same random variable

considered at the same location at a different instance of time, say t+tau, then how the outcome

of the random experiment based on the random variables,  they are correlated.  If the random

variables are same, it is known as autocorrelation. So it is based on the correlation between the

outcome of the same random variable just at different conditions.



One is at t, another is at t+tau and here the random variable is u prime which is the fluctuation

component of the velocity along x. So this sort of indicates that how strongly the outcome of the

random experiment in terms of the random variable, u prime here, at a given point at 2 different

instance of time are correlated. So if you have, for example, a plot of this r tau versus tau. When

tau-0, you see that you are talking about the correlation of the random variable u prime at a time t

with itself at time t.

And  therefore  they  are  exactly  the  same  and  it  is  clear  from the  expression  also  that  the

correlation coefficient is 1. So this autocorrelation coefficient is 1 at tau=0. As you increase the

tau, you are having the correlations of the same random variable at 2 different instance of time

which are differing from one another and in that way, the correlation coefficient will tend to get

reduced.

Beyond the threshold time limit, you see that the correlation coefficient is really very very small

and to get a feel of the timescale over which the variable is strongly correlated with itself at just a

different instant of time, we may consider the following. So if you find out the area under this

curve, that is basically integral of the correlation coefficient from tau=0 to infinity. So that is area

under the curve.

Now if we have a very strong correlation, say correlation coefficient=1 but lasting over a period

of time which is different, say lasting over a period of time given by this tau I such that the area

under the rectangle which is tau i*1 is same as the area under the previous curve. Then what it

shows is that tau i is obtained as a timescale, a representative timescale over which the variables

may be thought of to be very very strongly correlated and that may be obtained from the integral

of the correlation coefficient and this tau i is known as integral timescale.

So integral timescale physically is a representative timescale over which a random variable, here

the random variable is the velocity fluctuation, the random variable is strongly correlated to itself

as an outcome of the statistical averaging over the random experiments. Similar scales may be

obtained  by  considering  the  other  types  of  correlation  functions  such  as  cross-correlation

functions where may be you are trying to find a correlation between u prime and v prime.



So then u prime has to be replaced with b prime but we are not going into all those details. Our

main emphasis here is to develop a building block for the basic statistical analyses or statistical

description of turbulent flows. The big question remains that why should we at all go for the

statistical description of the turbulent flows? And we actually try to answer this question in a part

of our previous lecture.

That  when you have  a  turbulent  flow, the  governing differential  equations,  for  example  the

Navier-Stokes equation, they are very much valid. Only problem in implementing the governing

equations as the Navier-Stokes equation to solve for the velocity, pressure and so on, is that

number 1, there are multiple length scales and timescales. So you have the largest length scale

over which any important physical phenomenon taking place as the system length scale.

And as you go down, you will find that the smallest length scale is the Kolmogorov length scale

which is much much smaller than the system length scale and there is a whole lot of physical

activity engulfed between this largest and the smallest length scales and all these length scales

and  similarly  all  the  different  timescales,  they  need  to  be  captured  quite  accurately  so  that

resolution of the scale is important.

Even if that is resolved, the second question is, how reliable are the results? Because the results

will strongly depend on what? The results will strongly depend on the following. How reliable

are the input data? So when you say that how reliable are the input data, it obviously depends on

many things. The first is how reliable are the initial conditions. How reliable are the boundary

conditions?

So how reliable are the initial or the boundary conditions, this depend on the randomness of the

physical behaviour and in turbulent flows, the randomness of the physical behaviour is very very

strong. So when the randomness in the physical behaviour is very very strong, the only way in

which you may have a sort of deterministic behaviour is what? The only way in which you can

have a  sort  of deterministic  behaviour  is  by statistical  averaging of  the governing equations

because the statistically averaged behaviour will be sort of deterministic.



But otherwise each simulation may be like a sort of random experiment where slight deviation in

the initial condition or the boundary condition may trigger a large change in the final outcome.

So statistical averaging is the only important practical resort and that is why, we try to develop

the statistical basis or the statistical description of the turbulent flows. With that background,

what we will try to see is that, how we may statistically average the governing equations, that is

the Navier-Stokes equation is an example.
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So we will  now see the method in which you average the Navier-Stokes equation and since

Reynolds contributed a lot towards that, we also call these as Reynolds averaging process. The

Reynolds  averaging  process  starts  with  the  basic  form or  the  well-known of  the  governing

equations, for example we start with the continuity question. So let us assume that we are dealing

with the case when the density is a constant.

That means you have the continuity question as this one. So in the first step, what we do is, we

decompose the variable.  Here the velocity  is  the variable  into 2 parts.  One is the mean and

another is the fluctuation over the mean. When we say mean, we are not getting too specific that

what type of mean but as we discussed earlier that it may be for example time average, space

average, or ensemble average but here we are just, sorry, yes, but we are basically dealing with

some sort of averaging here.



And that  averaging is  what is  going to give rise to some equations  in terms of the average

quantities. The way in which we derive the equation is very straightforward. So we substitute this

uj in the continuity equation. Once we substitute that, what we will get? We will get this = 0 and

the next step would be to make an averaging of this equation. That means you average each of

these terms.

So if each of these terms is like time averaging, then what you are basically doing? So when you

are time averaging a variable, then you are basically multiplying that with dt integrating it from

say time=t-t+T/the time period in the limit as t tends to infinity. We have discussed that this

infinity is notional, that means it is a timescale much larger than the individual small timescales

of turbulence fluctuations.

So  that  operation  when  we  are  doing,  we  have  to  see  that  what  is  the  consequence?  The

consequence for the first term is straightforward, because it is already averaged. So average,

value of the averages that is itself. Now if you look into the other term, we have to basically

understand that what will be the average quantity of this after doing the differentiation. We had

earlier discussed that if you have say for example u prime and the average of u prime is 0, that

we have shown very easily.

The question is, what is the average of the derivative of u prime and to do that basically we have

to just use the limiting definition, the definition of the derivative in terms of limit. So you can say

that what we are looking for is that uj prime average at times, or say here is the special average,

so at  xj+delta xj-uj prime averaged at  xj/delta  xj  in the limit  as delta  xj  tends to 0 and see

individual constituents of the limit are the fluctuations and the averages are 0.

No matter the averages are evaluated where. So this therefore will become 0 and hence we come

up with the average continuity equation and once this is satisfied, if we substitute it back to the

original continuity equation, then what we are left with is that the fluctuation components also

satisfy the continuity equation. So that is one of the important things that we will remember.

With this  technique of averaging,  we will  next look into the averaging of the Navier-Stokes



equation.
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Let us say we first write the i momentum equation that is the linear momentum conservation or

general momentum conservation in the ith direction. So we write rho…, we have not written the

body force but if there is some body force, you can always add beyond this. So what we will do?

We will do the same thing as we did for the continuity equation. So substitute each term in terms

of its average + the fluctuation.

When we do that, what we get in the next step? So this is what we get as the left-hand side. This

=  the  right-hand  side.  Again  we  decompose  all  those  terms  in  terms  of  the  mean  and  the

fluctuation. Just as what we did for the continuity equation the same thing we will do that is will

now do an averaging of each of these terms. So when we do an averaging over each of the terms,

some of the terms come out to be very straightforward, for example, this first term, it becomes

just itself.

There is no change. The second term, we have seen that the derivative operations commute with

the averaging operation. So we can take as if we find the time average of ui prime or maybe

ensemble average of ui prime and find the derivative with respect to time. One of the important

thing is that that averaging operation is not conflicting with this t. Why? Because the timescales

over which we are averaging are different for the timescale for turbulent fluctuations and the



timescale for the system level fluctuations.

So although you have a sort of a timescale involved with the averaging of ui prime and the

timescale involved with the differentiation with respect to time. These are over 2 different scales

and ranges. So they do not conflict with each other. So here when this is averaged, this averaging

will give that this town will become 0. When you come to the third term, so let us look into the

simplification of this third term a bit more carefully.

So if we consider this third term which is this particular term. So it is uj del del xj of ui bar

averaging of that+uj… So we have just split it into 4 terms and once we have split it into 4 terms,

it is possible to simplify it quite conveniently. First of all, when you do the averaging operation.

This is like a constant for the averaging operation. It remains as it is. The derivative commutes

with respect to the averaging and the average quantity is there.

So that means it just remains the same as it is. So this becomes uj bar del ui bar del xj. When you

come to the next term, you see that you have one huge average which remains as it is after

averaging, then the derivative commutes and it is taken to be independent of the averaging. So it

is  basically  dependent  on the averaging of  ui  prime which is  0 and therefore  this  term will

become 0.

By similar argument, the next term will be 0 but the fourth term, there is nothing to believe that

the fourth term will be 0. It might not appear to be so intuitive that why it may be non-0 but we

just have to keep in mind that the average of u prime is 0, maybe average of u prime is 0 but

what is the average of u prime v prime and that in general, there is no basis for us to conclude

that it will be 0 always.

There are certain special cases in which this will be 0 but there are certain cases when this will

be not 0. On the other hand, like if you are talking about the same variable u prime square with

an average. So ui prime uj prime with j=I, that is anyway never 0 and we will see soon why. Now

when you come the last term, see we may manipulate with the last term by adding one extra

term.



What is that extra term? Let us say we add the following term. Let us say we add ui prime, this

one. Adding this extra term is as good as adding 0 because from the continuity equation, we

concluded that the fluctuation component of the velocity satisfies the continuity equation. That

means this term is itself 0. So whatever is multiplied with that and averaged, that is also 0. The

advantage  that  we have gained now is  that  you may combine  these 2 terms and write  it  as

nothing.

But this one, by the product rule of differentiation. So to summarise when we have simplified the

left-hand side, we have got a term which is exactly of the same form as that what we have got

even without averaging plus we have got an extra term here and this extra term is something that

we have to keep in mind while simplifying it further. The right-hand side is something which is

again much more straightforward.

So if you have the first term, the first term is same as itself because it is already averaged. The

second term will be 0 because it will deal with averaging of single fluctuation. The third term

will remain as it is and the fourth term will be 0 because it again involves averaging of a single

fluctuation. So whatever we have got from the simplification after averaging, if we try to cast it

in the form of the Navier-Stokes equation but now expressed in terms of a statistically averaged

description, let us see how it looks.
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So we have the left-hand side, if we just keep it just as in the same form as the original Navier-

Stokes equation, there was one extra term in the left-hand side because of averaging and that

extra term we will bring to the right-hand side. Here since we have considered a problem where

rho is a constant, so we can just take it inside and outside the derivative without any problem.

The left-hand side you see, if the time dependence of the average velocity or the mean velocity is

considered  to  be  0,  that  means  it  is  considered  to  be  a  stationary  turbulence  or  a  steady

turbulence.

It does not mean that the flow is turbulent, only statistically averaged behaviour is, it does not

mean that the flow is steady. It just means that the statistically averaged behaviour is steady. So

here this term, existence of this term or nonexistence of this term in either way it is unsteady. The

unsteadiness is always there with the fluctuations but when you have averaged it out, then if the

average quantity is independent of time, that if this term is 0, then we say that the turbulence is a

stationary turbulence or sort of steady turbulence.

Steady turbulence is a misnomer, of course because turbulence cannot be steady. So sometimes

stationary maybe a more convenient term but just it is a matter of terminology. Now if you see

that what is the term in which this equation differs in form from the non-averaged Navier-Stokes

equation and that is with this last term which actually was the extra term that was there in the

left-hand side and we will try to understand first of all that what is the mathematical nature of the



term.

And then we will try to get a physical feel of what is the physical origin of this term or what

could be the physical origin of this term. So mathematically if you see that the term here if you

consider this particular town term, this term has originated from the shear stress in a Newtonian

fluid. On the other hand, the term which is there inside, we cannot conclude that it has originated

from a shear stress physically.

But  just  by looking into the dimensions of this  terms,  we can say that  this  term also has a

dimension of stress and that is one of the important mathematical characteristics of this term. Not

only that,  mathematically  it  has almost perfect resemblance with the stress because this  also

requires like the stress tensor 2 indices for its specifications. So the description of this ui prime uj

prime average is  given by a stress tensor which is known as a turbulence stress tensor or a

Reynolds stress tensor.

It is a tensor of order 2 and the name stress tensor comes from the physical resemblance of the

stress tensor that we get for a case when we are writing either the averaged quantities in this

equation or the non-average form of the Navier-Stokes equation.  So if we want to write the

tensor in the form of a matrix with all  its components,  so you have say -rho if you take as

common, so basically you have u1 prime square u1 prime u2 prime u1 prime u3 prime…, we can

see that there are 6 independent components.

And this is a symmetric tensor, just like the usual stress tensor. So this is known as the Reynolds

stress  tensor  or  the  turbulence  stress  tensor. Why turbulence  stress?  Because like  this  stress

tensor has originated because of the turbulence in the flow, because of the turbulent fluctuations

in the flow. The important question is, that how will you treat this components of the tensor

mathematically and it is actually a very involved problem.

So to understand what is actually the involved problem, let us look into the equation. We started

with the Navier-Stokes equation. We knew that the Navier-Stokes equations are very much valid

for turbulent flow. Of course, if the other assumptions like Newtonian fluid and Stokesian fluid,



they are satisfied but it is not so easy to deterministically obtain the variables from the original

form of the Navier-Stokes equation because of the uncertainties in maybe boundary conditions or

say initial conditions like that.

So what we concluded is that they are statistically averaged forms are so-called deterministic and

therefore we statistically average them. One good thing of the statistically non-average form of

that, the system of equations was closed. So number of equations and number of unknowns were

matching with each other. Now we have new sets of equations where the variables are very much

deterministic, the statistically averaged ones, but the equations are not closed.

Because you have now come up with many new unknowns through this term. So you have 6

extra unknowns and there is no magical way by which you can have 6 extra equations for this 6

unknowns. Of course, you may try to write 6 extra equations but that might give rise to another

new set of unknowns. So closing the number of equations with number of unknowns, is one of

the very toughest things in statistical averaging.
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To get a fair idea of this problem, let us consider a very simple type of equation which is this one

but just for mathematical analogy. Say you have a equation dudt=u square, okay. Of course, this

equation has a very simple solution, if you give the initial condition at time=t0, what is u and you

can very easily integrate it, one of the simplest differential equations. But let us say, you do not



want to solve it in this way, you want to solve it with statistical averaging.

So then what you do, you average the left-hand side, you average the right-hand side. So what

you get out of this, you get the statistically averaged from of the equation as ddt of u average=u

average square. The problem is that with this averaging, you have given rise to a new variable, u

square average. Of course, you may think that well I will solve it by introducing a new equation

and that new equation you may introduce say by multiplying both the sides with u square.

So then what you get? Say you have dudt=u square. So if you multiply both the side with u, you

will get ddt 1/2 of ddt of u square=u cube. Just multiplying both sides by u, non-average form.

Then if you average it, yes you get a governing equation on average u square but you get a new

variable average u cube. So every stage, you try to do statistical averaging, you are finding it

tremendously difficult to close the system of equations and that is what is precisely happening

here.

So you have after Reynolds averaging in the equations certain terms for which you do not have

automatically explicit governing equations and therefore, number of equations and number of

unknowns or number of independent equations and number of unknowns are not matching and

the system of equations is not closed. So that is known as the closer problem in turbulence. This

is one of the biggest nightmares that one has to deal with.
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So the closer problem in turbulence is that basically you have certain additional terms in the

governing equation after Reynolds averaging and these additional terms do not have explicit

governing differential equations. So you have a mismatch between the number of independent

equations and number of unknowns. 

So only way in which, you may patch up this gap is to make a mathematical or a physical model

by which you postulate this term as an equivalent of some other term which you may know or

which you may pretend to  know by some sort  of  modelling  and that  modelling  will  not  be

something which is exactly the physical reality. But it might be an approximation of the physical

reality and that is the job of the modellers in turbulence flow analysis and that is the job of

turbulence modelling. 

We will  not go into the details  of turbulence modelling,  that is not within the scope of this

discussion but what we will try to do is we will try to see that what is the approximate way in

which these term may be modelled. To do that, we will have a deeper look into this Reynolds

stress tensor and try to draw an analogy of this with our usual stress tensor.

So if you recall that in our usual stress tensor, we had the diagonal terms and off-diagonal terms

and the diagonal terms were representative of the so-called the normal components and the off-

diagonal, the sheer components of the stress and when we derive the constitutive relationships,



we decompose the stress tensor into 2 parts.

One is the hydrostatic component which was obtained by sort of averaging the diagonal terms

and that was manifested in the form of a pressure which is acting equally from all directions and

a deviatory component or the deviation from the hydrostatic component and deviation from the

hydrostatic component is something which is important for modelling the constitutive behaviour

because  that  is  something  which  gives  rise  to  the  relationship  between  the  stress  and  the

deformation.

Because  that  is  what  is  responsible  for  the  constitutive  behaviour  in  terms  of  the  stress

deformation relationship.  So similarly here also you may decompose this stress tensor into 2

parts. One part is obtained from the diagonals of the terms, of the diagonals of the stress tensor,

the diagonal of the stress tensor and that is like the equivalent to the hydrostatic stress tensor

component.

Here we do not call it hydrostatic because it does not have the same meaning. We call it isotropic

component of the stress tensor and whatever is remaining contribution from the stress tensor, we

call it the anisotropic component of the stress tensor. So if we give the stress tensor a name say

tau,  say  Reynolds,  so  it  has  2  parts,  isotropic  and  anisotropic.  it  is  just  equivalent  to  the

hydrostatic and deviatory and the anisotropic part should be responsible for the description of the

equivalent constitutive behaviour in terms of the average quantities.

So when you write the isotropic part, isotropic part is basically -rho ui prime square+, sorry u1

prime square+u2 prime square+u3 prime square averaged/3, that is the mean of the terms in the

diagonal and the remaining is the anisotropic. So the Reynolds stress tensor is -rho ui prime uj

prime averaged, it has the isotropic part and an anisotropic part. The isotropic part, let us see how

we write the isotropic part.

We may write the isotropic part through a definition known as the turbulent kinetic energy. So

turbulent  kinetic  energy  is  sort  of  represents  the  kinetic  energy  because  of  the  fluctuation

velocities in the flow. So that is defined as just 1/2 of u1 prime square+u2 prime square+u3



prime square. Therefore, this term which is there in the brackets, it may be written in terms of

what?

It may be written as, you can write this one as -2rho K/3. What about the anisotropic part? Now

this anisotropic part, we may write or we may describe in terms of what? We may describe in

terms of an equivalent constitutive behaviour and just by analogy of the form, let us say we want

to write it as some equivalent viscosity which is not actually a molecular viscosity but some

equivalent characteristic*the average rate of deformation.

Once that is done, you may substitute this extra term as, this is one part which is the isotropic

part. So that is why this delta ij is there. This is only there if j=I and plus… So if we combine

these terms, we can write the right-hand side and the right-hand side becomes… Cosmetically

this is a greatly relieving form of the governing equation because it assumes a form virtually the

same as the non-average form of the Navier-Stokes equation.

What are the important changes? One important change is instead of the pressure, you have the

average pressure+a term dependent on the turbulent kinetic energy and let us say we call it p

average  equivalent.  So if  we were solving it  in  the same form as that  of the Navier-Stokes

equation, no problem but whatever p we get, we have to understand that it is not p average but

equivalent with some term because of the kinetic energy.

The other important observation is that, the mu in the original Navier-Stokes equation is replaced

by some equivalent mu which is mu+mu t or you may call it mu effective and this mu t which is

known as the turbulent viscosity is contributing to this mu effective and just this form, this form

was originally introduced by (()) (40:40) and of course this is just like a hypothesis. It is not that

this is exact and we have discussed that what is the philosophy.

The philosophies are disparate act of closing the system of equations and then of course it might

be  written  in  this  form because  it  is  an  acceptable  constitutive  form, you have  seen  that  it

satisfies the basic requirements of continuum mechanics at least in form but the big question is

now the mu t is something which is not known. So apparently it looks as closed but it is not a



closed system of equations because you have a mu t which is not a fluid property which depends

on certain conditions in the flow in terms of the statistical averaging of the fluctuations.

And therefore there might be an additional description or there must be an additional description

or modelling of this mu t which is one of the important jobs for turbulent flow modelling. So the

big understanding is that while we were trying to close the system of equations, we came up with

certain extra terms and we are seeing one of the approaches by which this extra term maybe cast

in the form of the original stress tensor form of the Navier-Stokes equation.

But it gives rise to some extra term in the equivalent viscosity definition and that extra term

comes out of turbulent fluctuations and their averaging and therefore, it is not so straightforward

to have a description of it without having more involved considerations. Now keeping this a

background, we will now see that what are the consequences of this fluctuation velocities and the

big question that we did not answer till now, is that why this quantity will be non-0.

Because if this quantity is 0, one of the big problems is resolved and so we have to understand

that what is happening which is not making it 0 and clearly we have to distinguish between the

terms which are like the isotropic components and the anisotropic components. In this context,

we will  just  remember  that  sometimes this  fluctuation  kinetic  energy is  expressed as a non-

dimensional parameter in terms of the kinetic energy or the mean flow at the inlet of a pipe for

example.
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So if you have at the inlet of a pipe some flow with the velocity say u infinitely, then you may

have  likes  u1  prime  square+u2  prime  square+u3  prime  square/u  infinity  square  as  a  non-

dimensional description of the or non-dimensional measure of the inlet turbulent kinetic energy

or may be at anywhere and this is known as turbulence intensity and many times, it is considered

to be as a fitting parameter for different mathematical models, may be 5%, 10% that is what is

commonly taken.

Now the other important point is, the physical description of this ui prime uj prime, and to do

that, we have to keep in mind that we are now having to deal with situations which have some

isotropic component and which have some anisotropic component depending on whether i=j and

whether i != j.  So let us try to revisit the important definitions of isotropic turbulence and a

related quantity, homogeneous turbulence.
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So when we discussed about homogenous turbulence, this terminology at least we introduced in

the previous lecture and what we remarked is that, if you have a homogeneous turbulence, it

means that the turbulence statistics are independent of position. So that means if you have say u1

prime square at  a point,  then if  you go at different points,  you will get the same turbulence

statistic.

That means turbulence statistics are invariant under translation. When we say invariant under

translation, questioning is translation of what? Obviously translation of the coordinate system by

which the turbulence statistics are described. So when it is invalid under translation, that means

no matter you translate the coordinate axis to a different location and find out the same quantity

in a statistically average sense, they are the same. It does not mean that u1 prime square is same.

It means the statistical average of u1 prime square is the same at all locations. Now when you go

to  isotropic  turbulence,  isotropic  means  as  we  discussed  earlier,  direction  independent.  that

Means the turbulence statistics are direction independent and when we say they are direction

independent, it means what? Direction independent means that if you have a set of coordinate

axis say x1 x2 x3 and you have say u1 prime square u2 prime square u3 prime square like that

some statistically average quantities, there could be many such quantities.

Now when you have a rotated coordinate system with x1 nu x1 like this, nu x2 like this and may



be nu x3 like this. Of course, orthogonality of the axis that is preserved. Then if you have the u1

prime square with respect to nu x1 u2 prime square with respect to nu x2 and maybe u3 prime

square with respect to this nu x3, they are the same. So the statistical  description is rotation

invalid.

Again it does not mean that u2 prime square is the same. It just means u2 prime square when

statistically average remains the same. Just like that. So not only rotation, also reflection.  So

turbulence  statistics  are  direction  independent  means  invariant  to  rotation  and  reflection  of

coordinate axis. Now another important catchword is that for when we are describing isotropic

turbulence, in the special case, we are also having a constraint that it must also be invariant under

translation.

So that is an additional constraint over and above this requirement.  So this plus it  has to be

invariant to translation and from this we may answer the question that we asked in the previous

lecture, we asked to ourselves that does it mean that homogeneous turbulence has to be isotropic,

number 1 or does it mean isotropic turbulence has to be homogenous. We can clearly see that

isotropic turbulence must be homogenous because it also has to be translational invariant, the

statistics.

On the other hand, there is no necessity, there is no guarantee that homogeneous turbulence will

be isotropic. So that is one important thing we need to remember. So with this understanding of

isotropic and anisotropic, now what we will do, we will consider that how this ui prime uj prime

terms are coming. So let us say we want to describe this with an analogy of the origin of shear

stress that we discussed when we are talking about viscosity in one of our earlier lectures.

If you recall, we introduced about 2 important physical origins of viscosity. One is the transfer of

molecular momentum between different fluids layers and the other is intermolecular forces of

interaction. Now we are trying to draw an analogy with the transfer of molecular momentum and

here  instead  of  molecular  momentum,  you  may  just  consider  the  exchange  of  momentum

between Eddies present in the turbulent flow.



So let us say that you have 3 different layers with a velocity gradient along a particular direction.

Say you have an increasing velocity gradient in the y direction. Let us say that this layer has a

velocity  along  x  and  u  average  along  the  x  direction.  Now  there  is  a  fluctuation  velocity

component which is like v prime of that layer. The average flow may be one directional or 1-

dimensional but the turbulent flow is always 3-dimensional and unsteady.

Only the average quantity may be 1-dimensional or 2-dimensional or steady. So because of these

fluctuations, what is happening? The fluid element, there is some fluid element which is joining

the top layer. What it will do with the top layer? It will try to reduce the velocity of the top layer.

Why? Because it is coming from a layer which is having a reduced velocity. So it will try to

exchange that reduced, exchange that momentum with the top layer and reduce the moment of

the top layer in the process.

That means because of a positive v prime, you have a negative u prime. That is the fluctuation in

u that is being created because of a v prime from a slower moving layer to the faster moving

layer at the top, the act is to have a reduction in u. So therefore, calculate u prime v prime or v

prime u prime, whatever, this product will be negative for this case. Positively v prime negative u

prime.

Similarly, you may have a v prime along the negative y direction. That is a fluid element try to

exchange momentum with the bottom fluid layer. So when it tries to do that, that it will do? With

a negatively v prime, you will have associated positive u prime. So again v prime u prime is

negative. So in both cases v prime u prime is negative. When it is moving to the top and when it

is moving to the bottom.

Therefore, we can say that when you statistically average this u prime v prime, all the negatives

add together and it is not the sum is, the statistical average is not 0 in general. So that is why see

when we wrote this -ui prime uj prime where i != j, when i != j means the deviatory component,

we wrote it in the form of mu t* this velocity gradient.

Here velocity gradient along y is positive and therefore mu t has to be positive because ui prime



uj prime when average when i != j, is itself negative, that negative with the minus becomes plus.

Here del u del y in the average sense is positive and therefore mu t has to be positive. However,

the situation may change dramatically if you have this type of a situation.

(Refer Slide Time: 52:02)

Let us say that you have a situation where you are having the central fluid layer like this. The

upper fluid layer like this, the lower fluid layer like this, perfectly symmetrical. This is like as if

y=0. Now in this case if you have a positive v prime, it will associate it with the negative u

prime. So u prime v prime is negative for this interaction. Let us consider a similar interaction

when it comes to a negative v prime and it interacts with the lower layer.

So here a negative v prime is associated with what? A negative v prime is associated with a

negative u prime because it comes from a slower moving layer, so it tries to slow it down. So

negative v prime and you have a negative u prime, so u prime v prime, product is positive and if

it has a sort of a symmetry in the distribution, then these 2 effects may nullify each other for such

pairs so that the sum total is 0 and that when it becomes a case that is ui prime uj prime average

becomes 0 if i is != j, then that is what is isotropic turbulence.

Because then in the turbulence stress tensor or the Reynolds stress tensor, you only have the

diagonal  terms.  All  the  off  diagonal  terms  are  0  and the  diagonal  terms  are  because  of  the

isotropy and the off diagonal terms are because of the anisotropy. So we can clearly see that what



are the possibilities? The possibilities are that when this ui prime uj prime they are averaged,

either they may be 0 when it is isotropic for i != j or the average maybe negative and if you just

try to draw this in terms of a scatter diagram and try to represent it.

Say we are plotting v prime versus u prime in 2 cases. One is isotropic, another is anisotropic. So

when you have isotropic, you see let us consider one case where you have say a deviation from

with the considerations say u prime=0. So if you have a case with v prime as some positive

quantity, you also have an equally probable case with v prime as negative of the same because

the average of u prime v prime taken over all possible value should be 0.

So if you draw a scatter diagram with such cases of points, so these points are what? These

points are scattered data. This scatter diagram in the form will look like a circular description and

the reason is straightforward that it does not have any bias towards coordinate axis. So you rotate

the coordinate axis, you will have a new u prime, you have a new v prime, still orthogonal to

each other, it is perfectly circularly symmetric.

So this will be the scatter of the data. So on an average, u prime v prime average will be 0.

However, when it is an isotropic, the scatter diagram, the scatter of points maybe like this and

why it is scattered like this? Because if you calculate the correlation between the 2, we have seen

that u prime v prime average has a negative correlation and that is why if you fit a regression

line, it will have a negative slope and that is why this will be the sort of scattered diagram for the

anisotropic one.

So by looking into the scattered diagram of u prime v prime or the correlation between u prime v

prime, u prime v prime was just 2 examples of ui prime not equal or i != j, ui prime uj prime and

by looking into this type of diagram, it is possible to have a clear picture on the extent of isotropy

or extent of anisotropy in the description of the turbulence in the flow. No matter whether it has a

whole lot of anisotropy or a whole lot of isotropy.

The big question will  remain is  that,  how we reflect  that within the description of this  new

unknown that we have introduced in the Navier-Stokes equation and the average when we say



the  Navier-Stokes  equation,  we mean  the  averaged  Navier-Stokes  equation  or  the  Reynolds

average Navier-Stokes equation.  So the equation that we are talking about now is known as

RANS or Reynolds Average Navier-Stokes equation.

So in the Reynolds average Navier-Stokes equation, now we have a situation where we have an

extra term, the extra term is because of what? It is because of the momentum exchange between

Eddies with different fluctuations. It is no more molecular momentum exchange but turbulent

momentum exchange but has a sort of analogy with the molecular momentum exchange and as

we discussed earlier, the molecular momentum exchange has also a sought of similarity with the

kinetic theory of gases, that is exchange of momentum between gas molecules.

And therefore by drawing analogy with the exchange of momentum amongst the gas molecules

and the exchange of momentum between the fluctuation components of Eddies, it is possible to

have some simplistic description of how to go about to describe this turbulent viscosity and that

may be achieved by a very simple but phenomenal engineering model known as Prandtl's mixing

length model, that we will do in the next class. Thank you.


