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We were discussing about the exact solutions of the Navier-Stokes equation.
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And we will consider now our second example, which is known as a Couette flow. So what is

the difference between this and the plane Poiseuille flow that we looked in the yesterday’s

class? If you have say 2 plates, which are parallel to each other and if you have a pressure

gradient which is acting on the fluid then the flow which is being created the fully developed

part of that that we call as plain Poiseuille flow.

Now in the Couette flow, there is a modification to that. What is the modification? Now the

plates are not stationary but one plate is moving relative to the other. That means you now

have say as an example the top plate is moving with a velocity uT relative to the bottom plate.

So it is not always necessary that the top plate will move with the velocity or bottom plate

will move with the velocity.

The important thing is there should be a relative velocity between the 2 plates in whatever

sense. So that relative velocity is being created by creating say a design motion of the top

plate. There are cases when this design motion maybe oscillatory or time dependent in nature



and that type of problem is not within the scope of this particular course but in an advance

fluid mechanics course which is there in the subsequent years that is discussed.

So here we are talking about there is a uniform time independent velocity with which the

plate is being moved. So with that understanding we have to see that what extra effect does it

create beyond the plane Poiseuille flow that we have discussed? See if you forget about the

effect of the plane Poiseuille flow; just think that this is there. This relative velocity is there.

What it creates in a fluid is a velocity gradient.

So it is an automatic inducer of velocity gradient because the bottom plate has 0 velocity, top

plate has velocity uT and let us say that the gap between the 2 plates is H. Then, roughly of

the order of uT/H is the rate of change of velocity or the velocity gradient. So it creates a rate

of deformation by itself by the boundary condition. So this is the way in which you create a

shear by the boundary condition itself.

So this is sometimes known as the shear driven flow. So this is a mechanism of inducing

shear or in other ways if there is a shear in the fluid, it is a one way by which you may

simulate it artificially by having a velocity gradient, which is roughly like uT/H. So we want

to simulate a rate of deformation. This is by giving a velocity to the plate and keeping a gap it

is possible to impart the order of magnitude of the rate of deformation that you want.

On the top of that you might be having a pressure driven flow because of by virtue of a

pressure gradient, some dp/dx is there, some negative dp/dx is there. We have seen that that is

what  that  can write  the flow through pressure gradient.  So you have a pressure gradient

driven flow, you have a shear driven flow and the resultant is the combination, what kind of

combination that we will like to see here.

So let us set up coordinate system say this is y axis and this is x axis and let us write the

equations of motion here. So we will keep all the assumptions which were there in the plane

Poiseuille  flow valid  for  this  problem also.  So steady flow, constant  properties  and fully

developed flow, incompressible of course all these things. So when you say constant property

by default it is incompressible that means density is constant.
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So with all these considerations into account, we have seen that you can write the equation of

motion as mu d2u/dy2=dp star/dx right.  See that was there for the plane Poiseuille  flow

problem, for this  problem it  does not change because what  has changed is  the boundary

condition but in terms of like whatever is there within the domain of the problem, there is no

special effect that has come into the picture or that has gone away.

So the governing equation remains the same. Now of course it is very easy and trivial to

integrate it twice to get the velocity by using these boundary conditions but what we will do

is we just do it in a different way, why the different way, we want to isolate the effect of this

additional thing which has come into the picture. So we will consider that say u1 be the

velocity field due to the pressure gradient.

And let us say u2 is the velocity field due to this plate motion. That is induced shear, so let us

write a governing equation and boundary condition for u1 and u2 or u if you want to write the

boundary condition, original boundary conditions at y=0, u=0 by no-slip at y=H, u=uT right.

That is also by no-slip boundary condition.
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Now let us say that we are writing this problem in this way mu d2 u1/dy2=dp star/dx with a

boundary condition at y=0, u1=0 and at y=H, u1=0 and mu d2u2/dy2=0 boundary condition

at y=0, u2=0 and at y=H, u2=uT. If you just add these 2 equations, you will get mu d2/dy2

u1+u2=dp star/dx and if you add these 2 fx, it makes u=0. If you add these 2 fx, it makes

u=uT.

So what u? u is nothing but u1+u2. Why we are able to do it so easily because of the linearity

of the governing differential equation. Since this is the linear differential equation that is the

governing equation  if  u=u1 is  the  solution  and u=u2 is  the  solution,  then  u1+u2 is  also

solution. So that is why you may use this linearity or exploit this linearity to decouple it into

2 different problems.

See the first problem with u1 is what we actually solved yesterday that is the Poiseuille flow

problem. Only the coordinate axis we have shifted, from the center line we have taken the

y=0 as the bottom plate. So that is just a cosmetic change, in principle it changes nothing. So

that problem is there as one part and the second part with u2 it totally isolates the effect of the

motion of the plate.

So you are now in a position to adjust or pinpoint the effect of the plate from the solution of

the u2 problem. So let us quickly solve the u1 and u2 problems.
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So the u1 problem if you want to solve so basically you have to integrate it 1 so mu or let us

write du1/dy is 1/mu dp star/dx*y+c1 and u1=okay. So use the boundary conditions for u1, so

at y=0, u1=0 that means c2=0. So the boundary conditions are c2=0 and at y=H, u1=0 so c1

is –H square/2 mu dp star/dx. So the u1 profile is 1/2 mu dp star/dx may be we put a –sign

outside*H square-y H right. So this is for u1.
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For u2, it is even simpler so d2u2/dy2=0 which means du2/dy is c1 and u2 is c1y+c2 may be

another c1 say c1 prime+c2 prime. So use the boundary conditions at y=0, u2=0 that means

c2 prime=0 at  y=H, u2=uT that  means c1 prime is  uT/H.  So u2 becomes  uT*y/H.  It  is

possible to write the expressions the velocity profiles for u1 and u2 in a non-dimensional

form.



For example, you can write u2/uT=y/H, this is a non-dimensional way of writing it and let us

give a  new variable  name y bar=y/H just  for writing  convenience.  “Professor -  student

conversation starts.” Which one? Last line, yes y H-y square because – sign is observed

already  right  okay.  “Professor  -  student  conversation  ends.”  Now  if  you  non-

dimensionalize u1, let us also non-dimensionalize these with respect to uT.

So we may write this -1/2 mu uT dp star/dx may be multiply both numerator and denominator

by H square. So it will become y bar –y bar square okay and see if you have a careful look

into  these  terms,  this  term in  the  bracket  is  non-dimensional,  the  left  hand  side  is  non-

dimensional so whatever is here is also non-dimensional okay. So let us just give a name to

this.

Let us say that this is alpha, which is a non-dimensional parameter. It depends on see this

alpha is a physically a measure of what? Physically a measure of the relative strength of the

pressure gradient in driving the flow with respect to the plate velocity in driving the flow

right.  So  although  it  is  a  mathematically  non-dimensional  parameter  but  physically  it

represents the relative driving effects of the pressure gradient and the shear imposed.

Now with this understanding let us try to write the resultant velocity which is just simply

u1+u2.
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So you have u=u1+u2 which is=or maybe u/uT as u1/uT+u2/uT that is=alpha*y bar-y bar

square and +y bar okay. So one important thing is that this alpha may be positive or negative.



See think of a case when uT=0, if uT=0 and if you want to drive a flow along the positive x

direction only way is you must have dp/dx as negative. That we have seen or dp star/dx as

negative if you consider the piezometric head as the total driving head.

Now if you come to a situation when uT is positive then there might be a case when dp/dx is

positive but still the flow is maintained along the positive direction because positive dp/dx

will try to have a sort of resistive effect on the flow along x but uT is trying to drive the flow

along the x direction. The resultant maybe such that uT is successful and then the flow maybe

along the positive direction.

So let us try to see that what are the typical velocity gradients. So for different values of alpha

let  us  first  find  out  what  is  du/dy  and  we  will  get  important  picture.  So  du/dy  bar

say=uT*alpha*1-2 y bar+1 so let us try to find out what is du/dy bar at y bar=0. So that

is=uT*1+alpha. So if you want to draw the velocity profile say this is the sketch where we

want to draw the velocity profile.

So along the x axis we will plot velocity, along the y axis we will plot the y coordinate. So if

you see let us consider a value of alpha, which is negative. So value of alpha negative means

what? Value of alpha negative means what happens to this? So alpha is negative means dp/dx

is positive. So dp/dx positive is adverse pressure gradient. So we have discussed it earlier.
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So always remember that positive dp/dx or dp star/dx implies adverse because we have seen

that negative dp star/dx is something which helps in maintaining the flow along the positive x



direction. So this is called as favorable pressure gradient. So adverse means it tries to have an

opposition to the flow. So when you have positive dp/dx that is if you have say if you have a

positive dp/dx that means you have negative alpha.

Now the situation is the du/dy at y=0 depends on the extent of negativity of alpha. So there

maybe one range of alpha where alpha is<-1 and another range is alpha is>-1. If alpha is>-1

although it is negative but sum of this will be positive. So you will have a positive slope of

the velocity profile but if you have alpha<-1, let us take an example say alpha=-2 so if you

take an example of alpha=-2, this is –uT in a non-dimensional form of course.

So what it means is that if you have a negative slope of the velocity profile that means the

velocity see at the wall it is 0 because of no slip.
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Then the velocity actually becomes negative because the slope is negative and if you want to

consider the upper plate see let  us say here is the upper plate here you have to have the

velocity as uT, which is like this that is why the boundary condition. So let us say that is=uT.

So somehow this started with negativity but it has to match with here, so it must somehow

cross this axis.

So in the process it will have a sort of minima at a point which you can easily find out by

differentiating u with respect to y and setting it to 0. So you are having a case where you may

have a sort of back flow say this is an example with alpha=-2 as an example. So the important



understanding is that you may get different sorts of velocity profiles depending on the value

of alpha.

Say you have alpha=1 as an example. So if you have alpha=1, you see that the situation is

different. For alpha=1 you have du/dy as something which is positive at y=0 and when you

want to sketch the velocity  profile what are the things you should look for and this  you

should practice at home, I am not going to do it for all possible ranges of values of alpha but

that you should do yourself.

But important characteristics of the plot you should look for what is du/dy at y=0 that is how

it starts  off and where is the location of du/dy=0 that is a sort of location of maxima or

minima in the velocity profile. If it starts off with the negative slope, then it will be minima.

If it starts up with a positive slope it will be a maxima somewhere. So that you have to find

out whether it is a maxima or a minima.

Where is it located is it because it has to eventually located between 0 to H and why we have

chosen this example for demonstration say alpha is a negative number, which is in magnitude

>1 because it gives a sort of interesting competition between the pressure gradient and the

driving shear. If you take alpha as something positive, then this dp star/dx negative is the

trivial case.

Then what happens the pressure gradient also drives the flow in a positive direction and the

motion of the top plate also drives the flow along the positive direction. So that is like they

just aid each other but here is a case where the pressure gradient is adverse, it tries to oppose

the flow whereas the motion of the top plate tries to aid the flow. Where the opposition effect

is strong?

Opposition effect is strong close to the bottom plate, which is the farthest away from the

location where the external induction of the motion along the positive x is there. So here you

see the locally back flow and as you go further and further away towards the top the effect of

the top plate will dominate.

Now there may be a situation when let us say that whatever is the effect of the integrated

effect of this velocity same as the integrated effect of this negative velocity then no matter



whether you have some velocity distribution the flow rate of each section maybe 0. So that

means you may come up with a situation where integral of udy from y=0 to y=H that is=0

that is Q. So you find out what is that condition? What should be the value of alpha for that?

That you may easily do by integrating this and finding the value of alpha. You will see that it

will come for a value of alpha corresponding to dp/dx positive.

Because if dp/dx is negative that will never occur, both effects will help each other. This is

the case when it will occur when both effects will oppose each other. So that the resultant

flow  rate  is  0,  so  although  you  have  velocities  locally  but  the  integrated  effect  of  the

velocities is 0. So the combination of different pressure gradient and shear that you should try

to look into by trying for different values of alpha.

What values typically you should try say alpha between -1 to 1 and alpha>1 example say

alpha=2 like that and alpha < -1 and that example that we have taken as 1 alpha=-2. So for

these ranges you try to assess the nature of the characteristics and try to make a sketch of the

velocity profile. This type of thing is very important. So you make a sketch of the velocity

profile does not mean that you actually plot it.

You assess the nature of the variation by the slope and so on and try to make an assessment of

qualitatively how the velocity will vary from bottom plate yo the top plate.
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Now a very simple situation corresponding to a special case of this is alpha=0. So when you

have alpha=0 that means there is no pressure gradient, so neither favorable nor adverse and



then just the solution is very simple u=uT*y/H. This is known as the simple Couette flow that

is the Couette flow without any pressure gradient. So this is the case where only the shear is

driving the flow and the velocity profile for this is linear.

So you can see that if you want to superimposed to velocity profiles to get the resultant

velocity profile, so you have the velocity profile as the sum of the velocity profile due to

Poiseuille flow which is like this for dp/dx which is negative, this is for negative dp/dx+a

linear  velocity  profile because of the motion of the plate.  So this is u1, this  is  u2.  So if

negative dp/dx, the resultant is the algebraic sum of these two just.

That is what we got from the differential equation u1+u2 but if the dp/dx is in the other way

you might have this is say positive dp/dx, you might have the pressure driven velocity profile

directly  in  the  opposite  sense and then  the  resultant  of  these 2 maybe either  positive  or

negative.  That  is  very  obvious  but  that  is  one  of  the  important  observations  from  the

individual velocity profiles.

So alpha=0 is a special case of just a simple Couette flow. Let us take a third example.
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Let us say that you have a inclined plane over which you have a thin film of liquid of uniform

film thickness h. So here there is some liquid and here there is air. So this line which is at the

top is the interface between the liquid and the air. Gravity is acting like this and the inclined

plane  makes  an  angle  theta  with  the  horizontal  and  pressure  at  air  at  all  locations  is  p

atmosphere.



So you have even like the left of the film p atmosphere the right of the film p atmosphere like

that and this is just a liquid film. So if h is very thin, it is known as a thin film flow and we

will like to see that what kind of velocity profile in the film you get in this case and again let

us assume steady constant property and fully developed flow. These are the 3 assumptions

that we are considering here also valid.

So let us write the momentum equations. What is the consequence of the continuity equation?

So let us set up the coordinates, most of the things are very similar to what the 2 cases that we

have already done. So we will summarize that. So let us say that this is like x axis and this is

like y axis. If you try to use the continuity equation, then what is the consequence of the

continuity equation? V is identically=0 for fully developed flow.

So  the  situation  does  not  change  here  why?  You  have  the  continuity  equation  for

incompressible flow=this. For fully developed flow, u is not a function of x, so that means v

is not a function of y. So here you are not maybe sure about the interface between the liquid

and the air but the bottom wall at least you know that at y=0 v must be=0, no penetration

boundary condition.

So at y=0, v=0 this means v=0 for all y. So you are having to deal with a situation where you

have only u as the velocity component. Again, we are modeling it as a 2-dimensional flow so

the third dimension perpendicular to the plane of the board is quite large in comparison to the

x and y dimensions. So if you write the y momentum equation, so again it will look like the

same as what we did for the Poiseuille flow.

So we are just summarizing it left hand side you have all the terms involving the gradients of

v so that those are 0 because v is 0 then –this+again all the terms involving v+the body force

along y. So what is the body force along y? So –rho g cos theta. So you have p=-rho g cos

theta*y+some function of x. Then our more important concern is the x momentum equation.

So let us write the x momentum equation.

So if you write the x momentum equation for steady flow, so you have rho, for the steady

flow, the unsteady term goes away so anyway let us write all the terms and see which term

goes away. So this is y momentum, now we are looking for x momentum. Then what is the



body force here? rho g sin theta, it is along positive x, g sin theta is along positive x. So now

let us see which terms are there and which terms are not.

First of all, because of steady flow this term is 0, then fully developed flow means this term is

0 and v is identically=0. So left hand side again has become=0. Since fully developed flow

you have the second order derivative of u also with respect to x=0 and u is the function of y

only. So this becomes the ordinary derivative d2u/dy2. So you have mu d2u/dy2=now what is

dp/dx? Dp/dx is df/dx basically.

Now one important assumption is that you have this gap h is very small so that we call as a

thin film. So if h is small what is an important consequence? The effect of the body force

along the y direction is not important because of the very thin gap, the effect of gravity within

the thin gap is not important. So because h is small, this particular effect is small. That means

fx is approximately=p or for a thin film it is as good as p.

There is no difference so you have basically this is=dp/dx-rho g sin theta. So you can write it

bit differently, you can write mu d2u/dy2+rho g sin theta=dp/dx right. Again you see the left

hand side you can write as function of y only of course this is like a constant but constant is

the special case of function of y, so this is the function of y only. This is the function of x

only.

And this  implies  each must  be a  constant,  so when each is  a  constant  then dp/dx is  the

constant means what? Let us say that L is the total length of this, dp/dx is the constant means

the variation of pressure with x is linear. So if you say that the left end is 1 and the right end

is 2 then basically you have dp/dx is what? p2-p1/L. Now from the boundary condition you

see that both p1 and p2 are p atmosphere right.

Because it is exposed to uniform atmosphere so this is p atmosphere and this is p atmosphere

therefore c=0 okay. So this is the case where c=0 but the way in which the flow is revealed is

because here the gravity acts like a driving pressure gradient. So we have seen there is a

piezometric head that is important and the gravity part of the head is giving the piezometric

head.



So it is from a higher elevation to lower elevation and that is what is driving the flow. That is

what is like equivalent negative dp star/dx. If you include this in the p star although p change

is not there but the gravity effect is there and then like it is very easy and straightforward to

integrate it twice to get the velocity profile. We are not repeating anymore but what we will

now try to pinpoint is what will be the boundary conditions.

See many problems have same governing equation but the solution of one problem differs

from the other through the boundary condition. So let us try to see that what are the boundary

conditions here? So let us write the boundary conditions.
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So boundary conditions,  what are the boundary conditions at y=0? What is the boundary

condition? Yes, what is the boundary condition at y=0? “Professor - student conversation

starts.” U=0 that is fine what is the boundary condition at y=H? Why du/dy=0 who says that

there will be no shear stress here.  “Professor - student conversation ends.” God has said

that there will be no shear stress here, where from you get that principle, which fundamental

principle tells that there will be no shear stress here?

Which  fundamental  principle  you  tell?  There  is  no  such  fundamental  principle.  The

fundamental principle is like this. Here you have 2 fluids, here is a fluid and this liquid is a

fluid. So fundamental it is like a problem where you have say fluid 1 and fluid 2, you are

thinking about the interface condition. At the interface what should be the condition? You

have continuity in certain things?



What are the things which are continuous? First of all, velocity is continuous because at a

point you cannot have different velocities when you consider 2 different fluids. So velocity at

fluid 1=velocity at fluid 2 at the interface but that is something what is like what we cannot

use here because we do not know what is the velocity. The other thing is that there should be

continuity in shear stress.

Because whatever is the shear stress at the interface in the fluid one side same shear stress

should be there in  the fluid 2 side.  So it  is  a  continuity  in  a  shear  stress.  Because  at  a

particular interface there cannot be different momentum transported the 2 sides. So the shear

stress  must  be  continuous.  So  the  continuity  in  shear  stress  means  here  it  is  just  a  1-

dimensional type of flow that means mu du/dy must be continuous. 

So at  y=H, you must  have mu of the liquid*du/dy measured from the liquid  side at  the

interface=mu of the air*du/dy at the air okay because the viscosity of air is much, much less

than that of the liquid, mu a is much, much<mu l. This term is much, much less that is mu

a/mu l  if  you write  this  term is  so small  that  it  multiplies  with  whatever  that  smallness

remains.

So  this  becomes  as  good  as  du/dy=0.  So  whatever  you  have  said  du/dy=0  here  as  the

boundary condition or equivalent to 0 shear is correct but in an approximate sense. If I now

replace air with another liquid, then you will be in trouble because then if you do not know

what is the fundamental principle from which comes out still you will write a wrong thing. So

important is the fundamental principle is continuity of the shear stress.

Here the special  case is just because air it  is a coincidence that air has much, much less

viscosity than the liquid water say this is water. So roughly like 1/1000 so then in that case

this right hand side is so small that we can say that it is as good as 0. So now the 2 boundary

conditions are at y=0, u=0 and at y=H du/dy=0 and then based on this boundary conditions

you can integrate  this  to  get  the velocity  profile  that  I  am not  going to  do,  very simple

exercise okay.

Now what we will do is we will see the consequence of having 2 fluids, which are such that

viscosity of one is not negligible in comparison to the other. So we have seen one such movie

earlier and what you will do is we will look into the one of those movies again.



(Refer Slide Time: 40:02)

So let  us  look into  one of  those movies  where  we were basically  looking into  effect  of

viscosities of a 2 layered fluid. So just try to see that you have a 2 layered fluid, you can just

perceive from the difference in color that you have 2 different layers and just colored dyes are

there, 2 different color dyes are there in the 2 fluids to indicate the velocity profile and you

see that the velocity profiles are such that at the interface there is no continuity in the slope.

That is du/dy is discontinuous at the interface that you can clearly see. The reason is it is not

the continuity of du/dy that is important, continuity of mu*du/dy because mu of the 2 fluids

are different, du/dy at the interface has to be adjusted. So when you have such 2 different

fluids with 2 different viscosities you should not look for a continuity in du/dy, you should

look for a continuity in mu*du/dy, that is what is the important thing okay.

Now let us come back to what we were discussing and we will now try to look into one

example problem where we will use a different coordinate system. So till now we have used

the Cartesian coordinate system to solve certain problems. Now we will come to an example

4 and then subsequently 1 example 5 where we will be using a different coordinate system.
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And the choice of the coordinate system is often driven by the geometry of the flow. So here

what  we are going to  do is  we are going to  discuss  something which is  important  from

engineering applications, fully developed flow through circular pipes, so that is known as

Hagen-Poiseuille flow. That is basically fully developed flow through circular pipes or tubes

or whatever.

So let us say that we have a circular tube or pipe like this. When we draw it looks like a

parallel plate channel because of course we are drawing the projection of it in the plane of the

board but keep in mind that we are talking now about a problem with cylindrical symmetry

where because the pipe surface here we are talking about is a circular cross section.
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So you have  a  pipe  of  say  maybe  we  are  talking  about  an  axial  length  of  L and  fully

developed flow. So the coordinate systems what we use for this case are the cylindrical polar

coordinate systems, which are more common. So you have small r as the radial coordinate, z

as the axial coordinate and if you take the cross section of this, so if you draw separately the

sectional view, it is a circle.

So the cross section wise the coordinate system is a polar coordinate system. So at a point if

you consider it is r, theta. So this is r and this angle is theta. So the coordinate system requires

r theta z and these are again mutually orthogonal coordinate system because theta direction is

perpendicular to r and r is perpendicular to z and that means you have now r theta z all these

are basically mutually orthogonal to each other.

Now we will  be  using  therefore  now the  Navier  stokes  equation  in  the  r  theta  z  or  the

cylindrical polar coordinate system. So already we have communicated the corresponding

form from the equations through the course website. You must have those equations with you,

important thing is it is not necessary that these equations you have to remember. We will

provide all these equations to you I mean during exams and so on because our test is not

whether you can remember these equations.

So whatever is there with you is something what you will have if there is a question related to

that it comes in the exam. Our important objective will be how to simplify those equations

and come to the solution of this problem. So let us look into some of those equations. I will

project those equations in the screen so that which are already there and it will be possible for

you to follow it easily.
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So let us look into the cylindrical coordinate form of the Navier-Stokes equation and we will

try to solve the Navier-Stokes equation with the cylindrical coordinate form. To do that we

will always start first with the continuity equation and see that what the continuity equation

gives to us.
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So let us look into the continuity equation form in the cylindrical coordinate. So if you look

into the continuity equation, if you look into say the slide the second equation, so the first

term is  that  the density  variation  with respect  to  time,  so we are  considering  a  constant

density fluid. So that term goes away, so let us see what the continuity equation gives to us

okay.
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Next, let us come back to the slide again. See the second term in the continuity equation. The

second term it remains because we are not very sure that what is going to be there. So 1/r

*d/dr*rho*rho r vr so that is the term and what about the third term, so you have a third term.

What about this term? First of all,  rho is the constant so rho is the constant and hence it

comes out of the derivatives. So here also rho comes out of the derivatives.

Then this term boils down to what? It boils down to the derivative of the gradient of vz with

respect to z okay. What is the fully developed flow? See here also the concept of parallel

plate channel does not change. That is, you have the boundary layer, which are merging and

beyond that the velocity profile whatever is going to be there that does not change further

with the axial coordinate.

The axial coordinate is the z coordinate. So that means vz is the velocity component along the

axial direction that does not change with the z coordinate any further. So fully developed flow

means this is=0 just like du/dx was 0 for parallel plates here just replace u with vz and x with

z  axial  coordinate.  So  then  you  are  left  with  d/dr  of  r  vr  that  is=0  right.  We are  not

considering that singular case.

These are the singularity at r=0, so we are not considering that singular case but for a general

case. So that means r*vr is not a function of r right. Only where it is possible, there are 2

ways, so one way is if you do not look into the boundary condition say you do not look into

the boundary condition but you just want to look into these so then if you have vr=c/r of that

form but then that will be a conclusion made without looking into the boundary condition.



Because this has to be satisfied within the constraints of the boundary condition not just as a

general case. So what is the constraint of the boundary condition that at the wall at small r=R

you must  have vr=0 that  is  a no penetration  boundary condition,  that  is  the fluid cannot

penetrate through the wall in the radial direction. So which means that you have since at r=R

vr=0 which means vr=0 for all r from this one except r=0.

That is the singularity, we are not talking about that. So whenever we are coming up with the

solution we are cleverly avoiding the singularity point and then for the remaining that from

this since this is not a function of r basically you forget about the r=0 case that means it is as

good as vr not a function of r so if you have found out that vr=0 at r=R it should be 0 for all r.

So from the continuity equation or conclusion is that vr=0 just like v=0 for parallel  plate

channels.

Next, we will go into the momentum equation. Let us say so we have how many versions of

the momentum equation.

(Refer Slide Time: 49:38)

So if you see the cylindrical coordinates you have the r theta and z. So let us look into the

case with theta. See first of all what about the derivatives with respect to theta? So if you look

into these equations, you will see that there are lots of terms which are having derivatives

with respect to theta. So if you want to figure out that what happens for the derivatives with

respect to theta, you look into the equations very carefully.

(Refer Slide Time: 50:09)



Now when you have derivatives with respect to theta in all the momentum equations such

terms are there, so terms of the form derivatives with respect to theta. Question is that when

will it be 0. See theta is what? Theta is the polar coordinate, so if you have symmetry with

respect to the axis that means that is called an axisymmetric flow. Then the symmetry with

respect to axis means that there will be no variation with respect to theta.

It  is  only  symmetric  with  respect  to  axis  at  which  theta  it  is  located  is  immaterial.  So

axisymmetric  problem  will  always  mean  this=0.  When  you  have  axisymmetric  problem

which means that this=0 you have to keep another thing in mind that axisymmetric problem

does not ensure that v theta=0, you could still have v theta but that not a function of theta. So

if you have a v theta component, it is something called as a swirl component.

Because it tries to have a rotation of swirl in the flow but here we are considering that there is

no v theta. So if there is no v theta I mean if you look into the continuity equations see the

continuity equation is satisfied.
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Let us go back to the continuity equation, you see that in the continuity equation there is a

term d/d theta of rho v theta so that term we omitted because of the axisymmetric condition.

So in the continuity equation, we did not consider v theta that does not mean that v theta is

not there. Simply, the theta gradient of v theta was 0 because of the axisymmetric condition.

So till now we have never utilized the condition that v theta is 0.

But now we will utilize it by noting that it  is not a swirling type of flow. There may be

swirling type of flow in a pipe where there is a rotationality that is imparted to the flow but

here we are considering that such rotationality is not imparted to the flow.

(Refer Slide Time: 52:15)

And that means you have for this problem so no swirl is considered that means you have v

theta=0. So you see certain conclusions are there. Conclusions at the end are important but



where from you arrive at the conclusions I feel is even more important. So now we go back to

the momentum equations again.

(Refer Slide Time: 52:33)

So  in  the  momentum  equation  let  us  look  into  the  theta  component  of  the  momentum

equation.  So  theta  component  of  the  momentum  equation  has  all  terms  involving  the

derivatives with respect to theta right, in fact all. So the theta component of the momentum

equation will have only one term which does not involve derivative with respect to theta.

What is that term? So if you look into the theta component, so in the theta component the first

term is dv theta/dt=0.

Second term vr dv theta/dr=0 because v theta is 0 that term is 0, third term has vr and v theta

so when v theta is 0 that is=0, fourth term also has v theta, so left hand side is 0, right hand

side no p variation with theta, so that term is 0, next term you have a v theta so although the r

derivative is there but because v theta is 0 that is 0. So if it is a swirl flow that term is not 0

but when there is no swirl that term is 0.

Remaining terms have either v theta or derivatives with respect to theta, either of those are 0

so it is like 0=0. So theta momentum equation does not give us anything for this problem.

Then the r momentum equation, so let us look into the r momentum equation. So for the r

momentum equation you see the first term. First term is dvr/dt that is because of steady flow

the first term is 0.



Second term vr=0 identically that you have to keep in mind because of fully developed flow.

So that means the second term is 0 and the third term is 0 either way either vr is 0 or the theta

gradient is 0 either way it is 0, fourth term you have a v theta square/r, v theta square/r is like

the  centripetal  acceleration  term  and  because  the  swirl  component  of  the  rotational

component is not there the fourth term is 0.

Then the fifth term vr is 0, so that term is also 0, right hand side –dp/dr now this term is there.

So at least we have found out one term which is there. So –dp/dr then next term, next term is

again 0 because vr is 0. Then the remaining term so d2 vr d theta 2 that is 0, d2vr dz2=0, dv

theta d theta=0. You have a rho br, so rho br is like if you have a body force along the r

direction.

So if you have a body force along the r direction then that is what is very much possible. So

you see that there is only one component, which is vz and there is no vz term in this.

(Refer Slide Time: 55:30)

So you have basically the r momentum equation giving what 0=-dp/dr+rho*vr okay. Now we

come to the z momentum equation, which is going to be the most important equation for our

velocity profile solution because our velocity profile is vz. So look into the terms. First term

so we are talking about the last equation, which is there in the slide. So first term the unsteady

term it is 0.

Then next term is vr is there, so that is 0, third term v theta is there that is 0, fourth term v

dvz/ dz is there which is 0 for fully developed flow. So the left hand side has become 0, right



hand side you have –dp/dz  which is  there.  Next  term,  the  first  term is  very much there

because vz as a function of r is what is reflected in that term and second term in the square

bracket vz is not a function of theta.

So that  is  0  and the third term is  0  by fully  developed flow. So we are left  with  the  z

momentum as 0=-this one+mu*1/r this*r+okay and what will be bz here, so if you have the

acceleration due to gravity like this, so let us say that this axis of the pipe is inclined at an

angle theta with the horizontal. So you have this angle as theta and this angle as 90-theta. So

you have a br as -g cos theta and bz as -g sin theta, so this is –g sin theta okay.

So the forms of the equations that where we have arrived are something which are very much

similar to what we have arrived for parallel plate channels, only because of the cylindrical

symmetry you have this 1/r d/dr this type of term so but if you write it in the divergence form,

in the vector form or here the Laplacian operator form, then that is basically identical. So

vector form is identical just because of the shift of the coordinate system.

This is what the second derivative of vz with respect to r looks like, whatever was there in the

Cartesian system equivalent in this cylindrical system okay. So we stop here now and we will

continue with this in the next class. Thank you.


