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Dynamics of Viscous Flows: Navier Stokes Equation (Contd.)

We were discussing about the derivations of the equation of motion for viscous flows last

time. And let us just briefly see that what are the important conclusions that we had out of our

previous derivations. So, first we started with the general equation of motion and we started

with the integral form, from the integral form we derived the corresponding differential form

with certain assumptions.
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And the differential form for linear momentum conservation along the direction i was written

in this way, in the Cartesian index notation. So, this is the first thing that we did. Of course

we have the corresponding vector forms and we also discussed. We also discussed what is

going to be the vector form. Now with the vector form you can clearly see that you may write

this as the divergence of rho V into the velocity component that you are talking about.

So, you may use interchangeable forms. Our next objective was to figure out that how we

may express tau ij in terms of the radiance of velocity and the fluid property may be one fluid

property or 2 fluid properties or whatever. We figure out that in a most general case you

might have required 81 independent constants to express the tau ij, the deviatoric component

of the tau ij with the rate of deformation.



But at the end we found that if you have a homogeneous and isotropic fluid it boils down to 2

scalars and we could identify what are the important scalars for expressing the deviatoric

component of tau ij. So, the first important thing is that what are the assumptions under which

this equation is valid? Yes, what are the assumptions? Well, continuum hypothesis is valid of

course that is otherwise you cannot write continuum conservation equations.

But most important is that you have stationery reference frame with respect to which you are

writing the equations. So, if it is not a stationery reference frame and a very general case of

moving reference frame with rotation and acceleration then you would have correction terms.

And those correction terms may easily be derived by starting from the Reynolds transport

theorem with the non-accelerating reference frame as the basis.

So, if you convert that to a differential form you will get some extra terms and those extra

terms are because of the transformation of the reference frame. Now, when we wanted to

express the tau ij the 2 components of the tau ij were like one was the hydrostatic component

and  the  other  one  was  the  deviatoric  component.  The  whole  idea  was  that  you  have  a

component of the stress tensor which is a function of the deformation.

And a component of the stress tensor which is not a function of the deformation and whatever

is not a function of deformation should also be prevalent in a case when the fluid is at rest.

Because when the fluid is at rest then it is a state of stress is something which is denoted by a

simple normal stress condition which is because of the pressure distribution and that prevails

or that manifest in this hydrostatic component.

It does not mean that when the fluid is at motion it is not there, it  is definitely there but

something additional is there which is attributed to the deformation of the fluid and that we

figured out that how we relate that with the rate of deformation. So we related this deviatoric

stress  component  with the  rate  of  deformation  by this  one,  where lambda and mu are 2

material property dependent constants.

We figured out that out of our basic understanding of the viscosity and the effect of viscosity

that  this  mu is same as their  viscosity coefficient  that we learned sometimes back in the

elementary discussions in our course. And lambda is a constant which is sort of known as the



second coefficient of viscosity is related to the volumetric deformation of the fluid element.

Because this term is nothing but the divergence of the velocity vector.

See here there is an index k which is a dummy index and it is repeated 3 times. So it is like

first partial derivative of U1 with respect to X1 then + U2 with respect to x2 and U3 with

respect to X3. So, that is the divergence of the velocity vector. So, since divergence of the

velocity  vector  gives the indication of the rate  of volumetric  deformation,  so this  part  is

related to the rate of volumetric strength and this part is related to the angular deformation.

An angular deformation we have seen that it is the shear deformation that matters for the

stress because the rotational  component  is  a sort  of effect  that  does not give rise to any

viscous stress. So only the symmetric part of the deformation is what is going to give rise to

the viscous stresses. What are the assumptions under which this is valid? See, Newtonian

fluid is one important thing, so you have Newtonian fluid.

The most important property that we have used is isotropic fluid. Homogeneous fluid will

imply that this lambda and mu are not dependent on x, xi that is position. So, if lambda and

mu are dependent on position still  you may make a bit of more general form of this one

which is a form of a non-homogeneous fluid element of material.  But if you assume that

lambda and mu are position independent then you say that it is also homogeneous.

So, let us for the time being assume that it is also homogeneous that is lambda and mu are

position  independent  and  so  with  these  assumptions  coupled  with  the  assumption  for

stationery reference frame it will now be possible to substitute the tau ij in terms of this one.

So, we have to keep in mind that the tau ij also had a hydrostatic component.

And this hydrostatic component is something which we realize that is because of the pressure

distribution. And it is a normal component so we use the delta ij notation when i = j only this

is 1 otherwise it is 0. So, that means when you are talking about a normal component of stress

then only this term comes into the picture. For all other cases it is 0. So, remember that delta

ij = 1, if j = i and = 0, if j is not = i.

Now, we will try to see or we will try to find out that what is this relation that is trying to give

us. See, when we were talking about the equation of motion this equation of motion had



several unknowns. So, one of the unknowns or rather some of the unknowns are the velocity

components. So, U1, U2, U3 and the other unknown was the component any component of

the stress tensor. So, 6 independent components of the stress tensor tau ij.

Now, we have  expressed  the  stress  tensor  in  terms  of  the  velocity  gradients  or  no  new

unknowns arise because of these. But because of pressure there is a new unknown that has

come into the picture. So, if you substitute this form in the equation of motion you will get

how  many  unknowns?  You  will  get  the  velocity  components,  independent  velocity

components, say U1, U2, U3 and pressure as the unknowns.

We will  try  to  see  that  how these  equations  and unknowns  maybe  closed.  Because  one

important understanding is when you utilize this equation you have to, your understanding is

you have to solve for velocity and pressure, these are the unknowns. And at the most you get

3  independent  linear  momentum  conservation  equations.  For  angular  momentum

conservation you do not get any extra equation.

Because tau ij = tau ji that has already been incorporated in some of the derivations. You do

not get anything new out of that and we will see that still with 4 unknowns and sort of 3

independent equations apparently how we can close the system. But before that let us try to

look into some of the implications of these terms. So, we will first concentrate on the term P,

the pressure.

Sometime  back  we  were  discussing  about  a  concept  called  as  the  distinction  between

thermodynamic pressure and mechanical pressure and we will  revisit  that again here. So,

when we are talking about the pressure here this is what how do you feel the pressure or how

do you relate the pressure with other parameters at a point. So pressure at a point may be

related with any other parameters at the same point through the equation of state.

So the equation of state may not be as straight forward as that of an ideal guess for any

general substance. But any general substance will have some form of equation of state. For

ideal  guess  it  is  like  pv  is  equal  to  that  type  of  equation  of  state  is  there.  So,

thermodynamically what it means is that if you know at a point what is say density and

temperature you find out what is pressure by having a functional relationship with those.



So, if you have 2 independent intensive thermodynamic properties by that you are able to

describe pressure as a thermodynamic property. So, it is a thermodynamic property because it

is a function of 2 other independent thermodynamic properties. From the ideal guess it is like

you are expressing it directly in a very simple relationship with pressure and temperature for

other substance density and temperature.

For other substances it may be much more complicated and not as straight forward. So, this

pressure that we are having here we call it a thermodynamic pressure. We will see that how

we distinguish it from a mechanical pressure but to do that we will first write the normal

components of the stress. So, we will write tau 11. So what is tau 11? Tau 11 is –P, why we

are only writing the normal component is because if we write the shear component this P will

not come into the picture.

So, if – P then + lambda, so even with lambda that also does not come into the picture for a

shear component and that is quite obvious because a volumetric deformation should not be

confused with a shear and then + 2 mu, right. Similarly, you can write tau 22, what is that – P

+ lambda the same thing. So, here i = 1 right and tau 33.

So, if you now add this together, all these 3 expressions what you get is something which is

tau 11 + tau 22 + tau 33 let us say we are interested to find out the arithmetic average or

arithmetic average mean of that. So, we divide it by 3. So if we add and divide by 3 right

hand side the first term becomes – P. Then if you see, if you add the last 3 terms together this

this and this you will get this term, right.

So, you can take here 3 lambda and here 2 mu as common with the del Uk del xk term and

that when divided by 3 will become lambda + 2/3 mu, okay. This is very simple and straight

forward. Now the term which is there in the left hand side this we call as – of mechanical

pressure.  So,  what  is  mechanical  pressure?  Mechanical  pressure  is  a  sort  of  arithmetic

average of the normal components substrates.

The sign is  adjusted because the positive normal  component  of stress is  sort  of taken as

tensile and pressure by definition is compressive. That is why this with a – sign it is adjusted.

So, this is a definition of mechanical pressure. We will now try to understand what physical



meaning does  it  convey, but  first  the  definition.  So,  you can  clearly  see that  we have a

relationship that relates the mechanical pressure with a thermodynamic pressure.

And the first and foremost observation is that in general they are not equal because you have

a correction term here. The question will be that when they are equal, when they are not equal

and what is the consequence of that equality or inequality? But to simplify things out Stokes

came up with hypothesis which is known as Stokes hypothesis. Stokes hypothesis was that

mechanical pressure = thermodynamic pressure.

We will see that under what conditions this hypothesis works and under what condition this

hypothesis may not work. So, Stokes hypothesis says mechanical pressure = thermodynamic

pressure that for a general substance will worth only if you have lambda + 2/3 mu = 0. That

means lambda = - 2/3 mu. Since this is a hypothesis obviously there was no proof of that but

there was some expectation based on which this hypothesis was postulated.

And  we  will  try  to  understand  that  expectation.  See,  mechanical  pressure  what  does  it

represent? It sorts of represents the effect of the translational mode of energy of molecules.

Whereas,  a  thermodynamic  pressure,  it  sorts  of  represents  the  translational,  rotational,

vibrational all modes of energy of a system of molecules. So, when you see the distinction,

the distinction will be because of the rotational and vibrational modes of energy.

So, one is representing only the translational modes of energy and one is representing the

translational, rotational and vibrational modes of energy. But there are certain cases when you

will not have a rotational and vibrational mode of energy. You have purely translational mode

of energy. Think of  a  dilute  monoatomic  gas,  so there  you have a translational  mode of

energy is the sort of is the mode of energy even when you look into it thermodynamically.

So,  in  that  case  you  do  not  have  any  distinction  between  mechanical  pressure  and

thermodynamic pressure and then Stokes hypothesis is not an hypothesis it is exact reality.

There  is  no  deviation.  But  all  substances  even  if  you  think  of  gases  or  compressible

substances all substances are not dilute monoatomic gases. And therefore for all substances

you will not have mechanical pressure = thermodynamic pressure.



But we have to understand that what is the expectation. The expectation is let us say that you

have a bubble. Inside the bubble you have some gas and let us say that the bubble is changing

its state. So, when it is changing its state, what is happening? Say there is some change in

temperature. So, because of the change in temperature may be it is changing its volume and

maybe there is also a change in pressure.

Now, how this pressure volume and temperature will be related? It depends on the mannering

which it is changing its state or the thermodynamic process. So, we are not going into the

specific  thermodynamic  process  but  we  are  just  keeping  it  a  bit  abstract  that  by  some

thermodynamic process it is changing its state from say state 1 to state 2 to state 3 like that.

So, when it is changing its state you have initially a pressure P, say P1.

Now, in the new state you have a pressure P2. So, when you change the state from pressure

state from 1 to 2 and there is a change in pressure from P1 to P2, now if you want to have the

entire effect manifested in the form of mechanical pressure then you should allow a time

which will make it locally equilibrate. That means the sudden change in pressure because of a

change in thermodynamic state  will  give rise to a change in vibrational  mode of energy,

change in rotational mode of energy, everything.

And eventually all these changes in equilibrium will be manifested in form of a change in

translational mode of energy it is only manifested by mechanical pressure. So, you should

allow  a  time  over  which  there  is  a  conversion  of  all  those  modes  of  energy  into  the

translational mode of energy that is captured by the mechanical pressure and that requires the

time. So this is called as a relaxation time.

So, the relaxation time is very important. What is the relaxation time? So, you are having a

system, you are imposing a change to the system and the system must have sufficient time to

absorb that change and have changes in properties by local equilibrium by having a new state

of local equilibrium because of that change. So, it should have a time over which it changes

that state of equilibrium. It cannot be instantaneous.

Because it cannot be instantaneous there is a time scale which is called as relaxation time

scale. Now, if the time change that is taking place is so fast that the time scale of the change

is faster than the relaxation time. Then what will happen? Then the material will not be able



to come to that equilibrium before a new change of state has taken place. So, it is like the

material is trying its best to come to a new equilibrium state at each and every instant.

But till it is successful again a new change has been imposed on it. So, that is a very rapid

process. Let us say, that you have such a process in which a bubble is rapidly expanding and

contracting. So, if the bubble is rapidly expanding and contracting and it is doing with a very

high frequency then that high frequency means it has a very short time scale over which the

change has been imposed and this change what is being imposed is externally imposed.

Maybe because of a change in thermal  environment maybe the temperature is fluctuating

very faster or whatever. And inside that the poor material inside the bubble is trying its best to

adjust to that. But it is not possible to adjust to that if the change time scale is very, very rapid

and  then  it  cannot  equilibrate  locally  to  come  to  a  state  where  is  mechanical  pressure

becomes = thermodynamic pressure.

So, mechanical pressure may not be = to the thermodynamic pressure if the time scale of

change is faster than the relaxation time scale. If that time scale of change is slower than the

relaxation  time scale,  then yes.  Then whatever  is  the change in  thermodynamic  state  the

system adjusts to that eventually that mode is entirely transformed into a translational mode

of energy reflected in form of a mechanical pressure.

So, the entire vibrational and rotational modes of energy should also be done in the form of a

sole  translational  mode  of  energy.  And  that  will  be  manifested  in  form  of  mechanical

pressure. So, it is a sort of like inter conversion of one mode to another mode and you have to

give it that enough time. For which, during which it will do that inter conversion.

So the summary of this understanding is that if you have a very rapid change or a very rapid

time scale or very fast time scale over which a change is imposed a thermodynamic change is

imposed on the system then the system may not be able to attain equilibrium locally based on

its relaxation time which may be slower than that rate of change that is imposed. And then it

will not be able to achieve a state where mechanical pressure is = thermodynamic pressure.

And then Stokes hypothesis will be violated. But for most of the practical applications that

we are concerned about the Stokes hypothesis. Because usually the relaxation time scales for



fluids these are very fast. So, usually the changes which are imposed on a system are not

faster than that. So, whatever change is imposed on a system at least locally at a point it tends

to attain equilibrium and that is call as local equilibrium.

It is not a global equilibrium that means it is not at throughout the system at each and every

point property is as same, it is not like that. But at each and every point at least it sorts of

attains an equilibrium where its properties are related by equation of state and eventually the

inter conversion from one mode to the other is possible that time is available. And that is why

stokes hypothesis works for most of the problems.

Only for a few rare cases where the change is so rapid in terms of the time scale there it may

not work. Otherwise, it is working and therefore when it works for the general case see, you

do  not  have  the  divergence  of  the  velocity  vector  to  be  0  in  a  general  case.  Only  for

incompressible flow it is 0. So, for a general case seems the divergence of the velocity is not

0 in a general case. Therefore, the other term must be 0.

So, this lambda is = - 2/3 mu is something which is obeyed for all fluids. There are certain

fluids for which we do not care whether this is obeyed or not. What are those special fluids?

One, we discussed is the mono atomic gas. So, we have a mono atomic gas you see that it has

to be obeyed not that we do not care whether it is obeyed or not. We do not care whether it is

a hypothesis or not. Then it is exact reality. So, it is not a hypothesis any more.

So,  for  a  mono  atomic  gas  this  exactly  will  be  valid  and  therefore  no  question  of

approximating  mechanical  pressure  with  thermodynamic  pressure.  They  are  like  exactly

equal for a dilute mono atomic gas. But for other gases this is not an exact relationship but

this works because of the time scales that we talked about. For incompressible flows we do

not care about these.

That is the only substance for which we do not care about this because its multiplier is 0. So,

for an incompressible flow since the divergence of the velocity vector is 0 the consequence is

that mechanical pressure will be exactly = thermo dynamic pressure. And the reason is that

for incompressible flow you do not have to satisfy a new equilibrium state through such an

equation of state. Because equation of state is not very explicit for a incompressible flow.



You do not have pressure density temperature relationships of the kinds, explicit kinds that

you have for compressible fluids. So, for incompressible flows you have mechanical pressure

exactly = thermodynamic pressure. So, even if you say that I do not care whether the Stokes

hypothesis is valid or not, still it is okay for incompressible so far as the analysis goes.

Now, the other important observation is if you look into the lambda see the viscosity of our

fluid is  positive that  we have seen earlier. So,  it  clearly shows that  lambda which is  the

second coefficient of viscosity will be negative. What is the physical consequence of that?

So, look into say maybe one of the expressions say tau 11. So, in the expression for tau 11 if

lambda is negative then you just look into or concentrate on the term that contains lambda.

It is lambda into the divergence of the velocity vector. So, let us say that the divergence of the

velocity  that  is  positive.  That  means  what?  That  means  volumetrically  the  material  is

expanding because it is the rate of volumetric deformation and if lambda is negative that

means the corresponding stress actually is reduced. So, more is the value of the divergence of

the velocity vector, the corresponding proportionate change is actually less.

Because it is being multiplied with a negative term. What it means? It means that if a material

if a fluid element is already expanding then the proportional enhancement in stress to expand

it  further  is less. If  it  is  implicit already expanding.  So, if  you have a divergence of the

velocity vector positive that means it has a sort of tendency to expand. And therefore the

proportional enhancement in the stress that is necessary to expand it further is actually not an

enhancement but a deduction.

So, but if it not already expanding, so if divergence of the velocity vector is negative that

means the stress that is associated with the further expansion is more if the divergence of the

velocity vector magnitude wise is more. So, that is the important consequence of the negative

sign of lambda. Not only that it may be shown we will not come into that here because it

requires a bit of thermodynamics.

And that is beyond the scope of this course that not only you have mu > 0 you should also

have lambda + 2/3 mu > 0. So, = 0 is the special case which is the stokes hypothesis. If the

stokes hypothesis does not work still it will be > 0 and the reason is that otherwise it would



highlight the second law of thermodynamics. So, because there is not enough scope to discuss

about that we will not go into that how this comes.

It is very easy ones you go through the thermodynamic course you will be able to appreciate

that it is very straight forward to figure out that why but important thing is to understand at

least at this stage that second law of thermodynamics give you a restriction on certain natural

processes or on the ranges of certain properties.  So, you cannot have all  properties in all

possible ranges.

Because the second law of thermodynamics restricts the cases that at the end of the process

the total  entropy of the system and surrounding should increase together. Entropy of the

system and entropy of the surroundings together should increase at the end of a process and if

this is not satisfied then that is violated.  And therefore, it  is possible to find out also the

possible ranges of parameters.

See,  that is where there will  be a difference between doing abstract mathematics and the

physical reality. When we are talking about an abstract mathematics and if the second law of

thermodynamics you do not care you may see like up to these no derivation has restricted

really that this should be >= 0. You could use any value. Say you may say that well; I will use

a positive mu.

Till  now  we  have  discussed  that  we  should  have  a  negative  lambda  but  with  many

combinations of positive mu and negative lambda this may not be satisfied. But we have to

satisfy these otherwise it will violate the spontaneous change in a natural process. That should

be according to the second law of thermodynamics.

Now, with this bit of physical understanding we will try to simplify the equation of motion

based on the derivation that we have made till now. So, the first simplification is we will put

back the tau ij expression in the equation of motion. So, if you put back the tau ij expression

in the equation of motion then it will boil down to, okay.

(Refer Slide Time: 32:18)



So, we have done nothing special we have just substituted the tau ij in the equation of motion.

So, we can make certain simplifications. Let us say we are bothered about the first term. See,

delta ij = 1 when j = i. So, the first term will become, so you replace the index j here with i

then only this is 1. Then next, for the next term also it is the same. For this term replace the

index j with i because of the multiplication with delta ij.

For the term in the last bracket you have basically 2 terms. The first term is this and the next

term is, okay. See, when you have a second derivative and you write in an index notation you

have to be very careful say you are writing this term, okay. So, if you write it in an index

notation say this is ui. So, if you write it in this way it will give you a false impression that

the index i is only ones but fundamentally it is like this one.

So, actually it is a repeated index. So, you may always use this notation of del square but you

have to be careful that that is just a notation. It is basically a first order derivative repeated

ones. So, you actually have a repeated index. This will not give an appearance that it is a

repeated index. So, here that is why we have just kept it the form which is like a first order

derivative operating on another first order derivative.

So, that the sense of the repeated index is preserved. Now, if you see that this is, okay first of

all let us say that we are dealing with constant properties. So, if you are dealing with constant

properties maybe the mu 1 you can take out the derivatives. Now, if you take the mu out of

the derivatives see here say for this term you take mu out of the derivative if it is a constant it

may not be an absolute constant mu may be function of time say as an example.



But important thing it is position independence because these are derivatives with respect to

position and for a homogeneous fluid it has to be like that. So, our earlier  assumption of

homogeneous fluid is not very inconsistent with this one. Now, then it is possible to switch

over with these derivatives. That is, you may have i here and you may have j here, why?

Because it is a continuity of the partial derivatives, second order partial derivative.

So, if the second order partial derivative is continuous say you have this you can write as this

one. If the second order partial derivative is continuous, so you may either do derivative with

respect to x first and then y or with respect y first and then x still they will give you the same

result if it is a continuous second order partial derivative. So, here we are assuming that it is a

continuous second order partial derivatives.

So, there is no discontinuity that we are assuming and in a continuum hypothesis that is

something what we should presume anyway. So, then what does this term become? Maybe

again you may put mu back inside because mu is a constant, so you can play with it either

inside or outside. So, then it will become, right, okay. This is it possible to write it in this

way? mu * you replace j with k, yes or no? Yes, because j is a dummy index.

So, there is a summation over that from 1 to 3. So, basically you are substituting this first 1, 2

and 3 and adding. It does not matter what name you give it to this j, k, l, m whatever, right.

So, this is called as a dummy index. That means what you get in the right hand side let us

therefore, the right hand side, so this is = -. So, you may club 2 terms, which terms? You may

club one term like this with another term like this, right.

So, you can write this into lambda + mu and then, okay. So, when we have come to this stage

let us recall what are the assumptions which are valid which are there for which it is valid.

What are the assumptions? So, first we started with a stationary reference frame then the next

assumptions Newtonian fluid and homogeneous isotropic fluid.  Stokes hypothesis  not yet

imposed, right.

Before imposing the Stokes hypothesis let us make another simplification by now looking

into the number of equations  and number of unknowns. See,  whenever  we are solving a

problem mathematically we are always bothered about the number of equations and number



of  unknowns  which  somehow we try  to  match  and  when  we  try  to  match  we  have  an

important understanding that number of independent equations should be same as the number

of unknowns.

So that you can solve for the unknowns in principle from the equations. It is not so important

first to know how you solve but at least it should be a well posed system which is solvable.

So, to understand that if you see here now let us consider a Cartesian system. So, when you

are writing ui see i is a free index. So, you have 3 equations for i = 1, i = 2 and i = 3, which

are like linear momentum conservations along x1, x2, x3 or xyz.

3 mutually orthogonal coordinate axis. The number of unknowns you have U1, U2, U3 which

is like UVW in the other notation and pressure. So, we have a 4th unknown. And that is one

of the big troubles you do not have an explicit governing equation for pressure. And to have

that  we only have a resort that we have 1 equation extra that  we can always use that is

continuity equation.

But that does not explicitly contain pressure but still it contains the unknown U1, U2 and U3.

So, at least, if you couple these with the continuity equation that will close your number of

equations and number of unknowns. They will match. So, we are always going to use these

equations in conjunction with the continuity equation. That must be valid. So, let us now try

to simplify this equation by utilizing the continuity equation.

Till now we have not simplified it using the continuity equation. So, this form of the equation

is known as the conservative form of the equation because see have not disturbed the form

which has come from the control volume conservation. So, we stared with the control volume

conservation  by  using  the  Reynolds  transport  theorem  and  we  just  convert  it  to  its

corresponding differential form. But we have not disturbed the form.

So,  this  still  is  something  which  you  can  recollect  that  has  come  from  a  conservation

principle directly. We have not simplified it further. But now utilizing the continuity equation

we will simplify these further in the left hand side and that will bring us to some form known

as non-conservative form. So, to do that let us right the left hand side.
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So, we will use the product rule of the derivatives and simplify it. So, you can write this as ui

that is the first term. Then for the next term you club up rho uj as one term and ui as another

term and use the product rule of the derivatives. So, you have, okay. Now let us combine

these 2 terms where you have ui as common. So, if you combine these 2 terms you have ui

and then let us write the remaining term, okay.

Clearly, what we can see that the first term in the square bracket is identically = 0 by the

continuity equation. So, this is 0, exactly = 0 by the continuity equation, okay. So, you come

up with a simplified form of the left hand side which is nothing but just the second term

which is remaining. And this term you can write in terms of the total derivative capital DDT

of what ui by the notation of capital DDT that we have discussed earlier.

So, the equation of motion maybe simplified now to this form, what is that form? So, we just

change the left hand side with this simplification which is as good as, okay. Sometimes when

this form is used, it gives an illusion. What is that illusion? As if it is valid for a constant

density fluid. So, this is where knowing the derivations are important.

If you do not go through the derivations and just look into it, use of common sense might lead

you to a conclusion that as if rho is a constant that is why it is out of the derivatives and

intuition  wise  that  is  correct  if  you  do  not  know  the  derivation.  But  if  you  know  the

derivations you will realize that this rho has come out not because that it is a constant it may

be still being a variable.



It has come out by use of the continuity equation and most general form of the continuity

equation not for rho = constant, okay. So, then is this valid for compressible flow? Yes, it is

very much valid for compressible flow. Because we have not simplified any further by using

the concept of incompressible flow or the consideration for incompressible flow.

So, the assumptions over which these are valid are the same as the assumptions for which this

was valid in its previous form that is a conservative form. So, these are just 2 different forms

and  one  may  interchange  one  form with  the  other.  Usually,  we  will  see  that,  see  these

equations  are  not  very  straight  forward.  See,  these  equations  are  some  of  the  very

complicated equations to solve applied physics and applied mathematics.

So why? See these are coupled non-linear partial  differential  equations.  So, these are not

linear partial differential equations. These are coupled because you have these at least these

equations + the continuity equations. So, at least the 4 equations which are there which are

coupled with each other because each equation contains some of the terms which are related

to the other highly non-linear pressure is residing on one some of the equation but you do not

have separate governing equations for pressure.

So these are some of the challenging aspects of this equation. So, in most practical cases you

cannot  solve  these  equations  analytically  and  you  have  to  use  computations,  numerical

computations to solve this equation and that leads to our entire specialized branch of fluid

mechanics known as computational fluid dynamics or CFD.

So,  that  is,  CFD is  basically  all  about  the  numerical  solutions  of  the  partial  differential

equations of like momentum conservation continuity and then these may be again coupled

with  heat  transfer,  mass  transfer  if  those  are  also  involved.  So,  all  these  couple  partial

differential equations, the other transport equations that is the heat transfer equation or the

mass transfer equation at least they are not non-linear.

But the momentum equations they are non-linear because you have terms like if you look into

this term like look into uj into the partial derivative of ui with respect to xj. So, this is actually

the non-linear term. So, if somehow this term is not there we will see under what conditions

these term not there. Then it simplifies the situation considerably and there are certain special

cases in which analytical solutions are available.



And we will work out some of those analytical solutions as a part of this course which are

known as like exact solutions of the equations of motion. Now next thing is that we have not

used  the  Stokes  hypothesis  and  let  us  use  the  Stokes  hypothesis  at  this  stage.  So,  you

substitute lambda = - 2/3mu. So, then lambda + mu, lambda + mu is known as bulk viscosity

of a fluid, it is just a name.

So, the bulk viscosity then it will become mu/3. So, this term will become mu/3, okay. So, we

have utilized now the Stokes hypothesis in the equations of motion. So, the corresponding

equation of motion will now become in place of this we will substitute the Stokes hypothesis.

Let us write it a bit cleanly. So, mu/3, so we started with the Navier’s equation of equilibrium

which is basically this one substituted the constitutive form of tau ij for a Newtonian fluid for

homogeneous and isotropic fluid material.

And then now we have substituted Stokes hypothesis and then this is known as Navier Stokes

equations. So, Navier’s equation for a Newtonian fluid + homogeneous isotropic special type

of  Newtonian  fluid  and most  important  your  fluid  that  obeys  Stokes  hypothesis.  That  is

known as the Stokesian fluid. So, just like a fluid that obeys Newton’s law of viscosity is

known as a Newtonian fluid.

A fluid that obeys stokes hypothesis is known as Stokesian fluid. So, the fluid is the very

special fluid for which we are writing this equation Newtonian and Stokesian fluid and with

homogeneous and isotropic fluid properties. So, that is known as Navier Stokes equation.

When you have, so this form of the Navier Stokes equation is valid both for compressible as

well as incompressible flow.

When you come down to the case of an incompressible flow as we have discussed that it

really does not matter whether stokes hypothesis is there or not whether it is violated or not. 
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So for incompressible flow we can clearly see that this term is not there because this is 0 for

incompressible  flow  because  that  is  the  rate  of  volumetric  deformation.  The  most

fundamental  definition  of  incompressible  flow  is  that  you  have  0  rate  of  volumetric

deformation. So, when you have that incompressible flow it does not matter whether lambda

is = - 2 third mu. This term is identically = 0.

So, then if you write the Navier Stokes equation for incompressible flow which we will be

dealing  with in  our subsequent  exercises,  so that  will  be rho,  okay. So, although Navier

Stokes equation it actually does not requires Stokes hypothesis. It is just good enough to have

a Newtonian fluid with homogenous and isotopic fluid properties. And we will be often using

this form of equation for our calculations or for the exact solutions that will be deriving in the

subsequent classes.

So, it is possible to write these in a vector form also. So, if you want to write this in a vector

form or let us first write it in a well-known U, V, W component form. So, if you want to write

it in a U, V, W component form you have. So, this is write if you want to write by using the

notation U1 = U, U2 = V and U3 = W and write it in an expanded form. This expanded form

is often used if you solving it analytically because you are interested to get a full feel of the

terms.

So, if you see that what do these terms indicate. Left hand side is like what when you are

writing rho into capital DDT of ui. So, rho is mass per unit volume and this is acceleration of

flow. So, this is like mass * acceleration of flow per unit volume and by Newton’s second law



the right hand side therefore should be force per unit volume. So, these, so it is just like

Newton’s second law of motion written for fluids in this frame.

Nothing more than that. So, the right hand side what are the forces which are there? This is

the force due to pressure gradient. This is the force because of viscous effects and this is the

body force.  If,  so the  body force  may be anything like  it  may be  because of  gravity  or

whatever but it is important to recognize that it is something which is a very general force

that we have kept here.

So, there may be effects of electrical field, magnetic field or many other forces may influence

the fluid flow and all those extra effects will be appearing in this form of the body force. So,

what we say at the end is that if you have the Navier Stokes equation, the Navier Stokes

equation should be coupled with the continuity equation. So, this is, this we say that this is

the x component of the momentum conservation.

Similarly, you can write the y component and the z component. So, y z component and the

continuity  equation.  So,  that  will  be  the  coupled  equations  which  will  involve  your  all

equations  and  unknowns  and  we  should  be  in  a  position  to  simplify  those  for  specific

problems to solve the equations to get the velocity and the pressure fields. So, that will be our

objective from the next class onwards.

We have to keep one thing in mind that these Navier Stokes equations whatever we have

derived here, see there are certain things which we tend to take as rituals. So, Navier Stokes

equations in fluid mechanics have been taken as rituals for long and it was thought that these

equations are giving the correct physical meaning for almost all cases.

But there are certain cases where it was found that this equation is not giving the right picture

although continuum hypothesis is not totally violated, still it is not giving a very consistent

picture. I will give you 1 or 2 very simple examples. Let us say that you have a molecule, gas

molecule which is subjected to a very high density or temperature gradient.

So,  when it  is  subjected  to  a  very  high temperature  gradient  because  of  the temperature

gradient the gas molecule may start moving and this is sort of called as self-diffusion. So, it

moves within its own medium because of strong local gradients of temperature or density.



Now, that is nowhere manifested in this equations. So, if you just use these equations you will

get a 0 velocity.

Because you do not have any term in this  equation which is representing a sort  of local

density or local temperature gradient driven motion of flow. And this is an example which is

known as that. So, or sometimes it is called as diffuse because of the self-diffusion. So, these

types of motions which are achievable in highly redefied systems this is not manifested in

these equations.

So,  what  we  try  to  do  is  that  we  try  to  correct  the  Navier  Stokes  equation  and  try  to

incorporate those terms. So, extra terms, so that it may be able to physically incorporate the

effects of those like thermo types of motion and that is how we extended the Navier Stokes

equations.

So, this beyond the scope of these study or these class to discuss that how we did it and what

are the important remarks but only one observation that is one of the thought processes is that

I would like to share with you is that whatever you are learning, see utmost times as teachers

we tend to believe or we tend to tell you that as if we are Gods we know everything and it is

your responsibility to like digest that.

But most of the things actually we do not know and I think our greatest objective should be to

tell you that what we do not know rather than what we know. But first we tell you what we

know because it is easier for you to digest that. So, the Navier Stokes equation in the very

classical form was something which has a mystery which did not contain something. We try

to correct that I am not saying that we corrected it fully because we could do it only for ideal

guesses.

But at least it was an extended form. So, the long history of how the Navier Stokes equations

were there at least over the last 2-3 years we could change it and extend it for more general

types of flows. So, with this we stop this lecture today and will continue in the next class.

Thank you.


