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In the previous lecture, we were discussing about like how to write the basic principle of

angular momentum conservation for a control volume and we will look into some examples

related to that but just to physically appreciate that what kind of examples are there may be

let us look into one or two cases, we will see that what are the differences in like practical

cases, when you have a linear momentum and angular momentum conservation.

(Refer Slide Time: 00:51)

So, first we look into an example which we discussed it in some way that basically you have

a flat object on which there is water which is falling.

(Refer Slide Time: 01:09)



And you can see that the reality is so different from what we considered with the water jet

may not be thin; the water jet may be having different thicknesses at different sections.

(Refer Slide Time: 01:17)

So, it is a gross simplification of what we could see, now think about a; look into a situation

when the water jet is falling on something, which is mounted on with respect to one axis and

when  it  is  doing  like  that  it  creates  a  moment  of  the  linear  momentum  or  the  angular

momentum and that mounted wheel starts rotating and that is the basic principle of a turbine

that we will see later on when we will be discussing about the hydraulic machines.

(Refer Slide Time: 01:51)



But now, before going into such complicated things of fluid machines, see this example this

also  gives  a  very  important  example  of  angular  momentum conservation,  this  is  a  lawn

sprinkler, so this is commonly used for watering the gardens and if you see that water is

coming out of the limbs of the sprinkler and when water is coming out that water comes out

with a velocity.

Because  water  is  supplied  at  a  given  velocity  and  when  water  is  coming  out  with  that

velocity, what is happening? Basically, it is having a linear momentum that linear momentum

has moment with respect to the axis of the sprinkler, so there is an angular momentum and

there is a rate of change of angular momentum that makes it rotate, even if it is like; if there is

no frictional resistance that will make it rotate very fast.

Because of some frictional resistance against rotation in the pivot which is there, it will not

rotate as easily as we might think but still you have seen in this example that it might rotate

quite easily. So, if you see that; see, initially there is no rotation but when the water is coming

out see, we are trying to develop an understanding that it is actually an unsteady problem, so

that is the first thing to appreciate.

It is not a steady problem because you see that the entire physical behaviour what we are

observing here is  a function of time and our important  objective will  be to see that if  it

develops an angular velocity  from say, time = 0 to sometime = t,  then how that  angular

velocity evolves with time? So, this lawn sprinkler example is a very simple example but it

can demonstrate a good use of the angular momentum conservation principle.



And this principle in a more elaborate way is used for analysing those fluid machines, which

are basically  of rotating nature like there are  2 very common devices,  which we will  be

discussing later on; one is a centrifugal pump and another is a rotating turbine. So, we will be

discussing about these things in more details that will probably be our last chapter in this

course of fluid mechanics that is the fundamentals of fluid machines.

(Refer Slide Time: 04:19)

Right now, we will not go into that application but we will concentrate more on a simple

example, so we will use this for a case, so let us take that example, when we consider that

example we will simplify whatever thing which we saw in the practicality, we will consider

that there is only one limb like this of the sprinkler and this entire thing is in a horizontal

plane; rotating in a horizontal plane, just think that it is one arm.

There could be many such arms but we are just concentrating on one arm, so the water is

moving at uniform velocity relative to the rotating arm, so the arm is rotating, if you had

looked into the examples very carefully no matter wherever the arms are there, the water

related to the arm was coming out with a fixed velocity because that is the rate at which it is

being provided.

So, the water it comes to the center and then gets distributed along the arm moves along the

arm with a uniform or a constant velocity relative to the arm and eventually, it goes out like

what shown in the figure and let us say that it starts rotating with an angular velocity omega



which itself may be a function of time and our objective is to find out what is this omega as a

function of time.

Let us say that we know that rho is the density of the water and Q is the total rate of supply of

water; volume flow rate; so this is volume flow rate like meter cube per second. So, we will

try to analyse this problem in 2 ways; one is with an inertial reference frame, another is with

a moving reference frame and we will try to see whether we converge to the same conclusion

or not.

We start with the moving reference frame that is we; as if we attach the reference frame with

the sprinkler on which is rotating with a given angular velocity with not a given; with some

angular velocity, which is a function of time and therefore it is subjected also to some angular

acceleration but it is not translating. So, now we are having a control volume, which is a

rotating control volume but not a translating one.

See, this problem is a symmetric problem with respect to the center of the arm, so we may

take say a control volume say, half of the entire thing, when you have a problem which has

symmetry in certain ways and the physics is also symmetrical, geometry is also symmetrical

then you can reduce your task or burden by taking a symmetrical part of the problem. So, we

have taken one symmetrical half of the problem.

In this problem, we have neglected one thing, we have assumed that the vertical part of the

limb is very very small, so it is mainly a horizontal one and the vertical is very, very small,

remember that this is actually in a horizontal plane, so thus because we have to draw it in the

plane of the board, it appears to be like it is upwards but it is like in a plane, it is a bit bend

like that and that bend part is quite small that we are assuming.

It is just to give it a sufficient change in direction but not enough length that is what is the

assumption and let us say that the radius is capital R, which is the radius of each limb and that

is symmetry. So, we will write first the equation for the moving reference frame, so when we

write  the  equation  for  the  moving  reference  frame,  we  will  use  this  form whatever  we

discussed in the previous class.



One important correction which one of your friends has mentioned and it is quite correct that

this term is not going to be there in a relative expression because this like; when we wrote a

relative that was basically  a capital  XYZ - a small  xyz and that  is  how this  actually  got

nullified in that expression. So, we need not duplicate it, so this term is not there in a relative

one, just keep in mind that was a mistake and you please correct that.

Now, next is; so let us try to apply this one with respect to this expression, so the resultant;

again we are considering that it  is a frictionless pivot,  so what it  tells  is that there is no

frictional resistance moment, when this is rotating, so this is rotating like freely, so to say, so

when this is rotating freely, you have the resultant moment of all external forces because of

what; one may be because of the frictional torque, which is present. 

So, frictional torque we are assuming to be 0 but there could be torque because of the weight

distribution and because it is symmetrically distributed, the resultant torque due to weight, it

is there or not there? So, let us consider a small element in there, so you have a symmetrically

located thing, a small element in this side will always be counter balance by an equivalent

small element in the other side, in terms of the rotational thing.

So, there is actually no resultant moment of external forces because only 2 external forces

could be that rotational resistance plus the moment of the distributed weight, okay, so that is

not there, so that is a null vector. Then, let us; if you consider the moving reference frame, so

in the moving reference frame, we have this correction term, so a relative. So, in a relative

first term is acceleration of the control volume that is a linear acceleration of the control

volume, here that is 0.

Next are the 3 rotational terms that we need to consider, so what are the rotational terms? 2

omega cross V small xyz, so V small xyz is what? It is the velocity of the fluid relative to the

control valve, we are assuming that it is moving at a constant velocity relative to the control

volume, so V small xyz is like a constant but if you want to write this term properly, let us

write - integral of r cross a relative * dm for the control volume.

So, what we will do; we will let us say, we will split this, a relative in different parts instead

of just writing it in a cumbersome single expression, so we will find out the contribution of

the 3 different terms, which are there. So, 2; before doing that what is this dm; that you have



to keep in mind, dm is some small element at a distance; at a radial distance of small r, you

can take a strip of width dr.

And let us say that capital A is the area of cross section of the sprinkler, this area of cross

section, so dm is what? If dm is the elemental mass of the shaded volume, then what is that?

Dm is rho A dr, so basically when you are writing the expression, this will be integral of

whatever you write as a relative with this entire thing that multiplied by rho r dr, integrated

from small r = 0 to small r = capital R that will be that correction term in the left hand side.

(Refer Slide Time: 13:11)

So, before applying that correction term, let us write these things in a vector form, so what is

omega in a vector form? Let us say this is xy plane, yes, omega K; what is V small xyz? No,

this is by positive sign convention, if it comes out to be minus something then that will be

like that. So, then what is V small xyz? So, it is moving; no, no V small xyz is what; Velocity

of the water relative to the sprinkler.

So, if say it is moving at a velocity Vr relative to the sprinkler in a magnitude sense, vector

sense yes, with these 2 options, i or j, yes only 2 options are there, it cannot be K, so only i

and I, yes. I or J? You are not very sure it should be i, see when you are considering these,

this will be a volume integral, this part is negligible in comparison to this part, so it should be

ideally, for this part i and for this part j.

But because I have already mentioned that this is like of negligible length, in the volume

integral only this horizontal part is mattering and there it is moving radially, so it is like Vri



okay, then omega dot that is the only other thing that is remaining, let us say that is omega

dot K, let us say omega dot also has a positive sense like that. So, a relative; first 2 omega

cross V small xyz, so these 2 cross product; so, 2 omega Vrj then, omega cross omega cross r.

What is omega cross r, what is r in a vector form, ri? So, omega cross r is omega rj and

omega cross omega cross r is - omega square ri, so it is just like centripetal acceleration, so -

omega square ri, then next is omega dot rj. Now, if you make r cross a relative, so you will

clearly see that the centripetal  term will not be there because it is directed along r, so its

moment will be 0 but other terms will be there.

So, 2 omega Vr K + omega dot r K with r multiplied, right, so let us write r, r square. So,

when you write this particular term, now we are in a position to write it in a proper integral

form, so that will be - of 2 omega Vr r + omega dot r square * r dA sorry, rho A dr that is dv, 0

to capital R, right, so that will become - rho A omega Vr capital r square + omega dot r cube/

3, okay.

Then the right hand side, let us write the right hand side; now you tell, the left hand side we

have completed, right hand side what will be the first term? You have to see what are the

things which are functions of time, V small xyz is not a function of time because we are

assuming that relative to the sprinkler arm, the water is moving at a constant velocity, so no

matter how the arm is moving but relative to that.

(Refer Slide Time: 18:56)



And we are writing it only relative to that it is not changing with time neither the volume of

the control volume is changing with time, so that this term will be 0, so in the right hand side

the first term will be 0 and what will be the second term? Second term is the flow boundary;

it represents what happens at the flow boundary, so for the second term when you substitute

that  so  let  us  assume that  these  velocities  are  again  uniformly  distributed  over  the  flow

boundary.

So, V dot eta dA, this term if you just keep it inside, now r cross V small xyz, can you take it

to be independent of the area and bring it out of the integral, yes or no, what is this r now?

These r where;  this  is; some r located at  the flow boundary that means at  these location

somewhere  because  this  is  very thin,  it  does  not  really  matter  exactly  that  where  is  the

variation might be somewhere here.

So, that is basically  capital  Ri + something j + some little  something j that is the radius

outside, so let us say that it is capital R, let us give it a name say, a keeping in mind that a is

small, so ri + aj that is r cross V small xyz is a constant, so that also we can take it out of the

integral provided with also consider it to be constant over the area; uniform over the area. So,

if you assume it to be uniform over the area, we just take it out and that is V relative.

And then rho is there of course, rho let us, write the remaining thing which is there in the

integral is the volume flow rate over that section, so what is the volume flow rate over that

section? Yes, it  is Q/2, see we have only taken the half  of this; that half  of the Q flows

through these, half of the Q flows through these, there is no exception because it is perfectly

symmetrical, so this into Q/2 that is the right hand side.

(Refer Slide Time: 22:25)



And the question is what will you put this in a vector form, so Vr what; i or j? This one, V rj

right, so you will see that this little part a will not matter because of the cross product, so it

will become; let us write it completely, it is = rho Vr r Q/2 K, since the left hand side is equal

to the right hand side; so the left hand side equal to the right hand side, which implies what?

-rho A omega Vr r square + omega dot r cube/ 3 is = rho Vr r Q/2.

This we miss that K cap with the vector sign that was there, so this omega dot is nothing but

d omega dt, Vr you know because what is Vr; Vr is the flow rate divided by the area, so Q/2

divided by A, so given the flow rate, you should be in a position to substitute Vr, which is a

constant, so only the variables are d omega dt and omega, so it is a differential equation of the

form something * d omega dt + something * omega is some constant, right.

So,  it  is;  you  may  separate  the  variables  easily  to  solve  it  because  these  are  constant

coefficients here. Now, let us try to look into the problem from an inertial reference viewpoint

and see that whether we can solve the same problem in that way. So, now we will get rid of

the  non-inertial  corrections  and  we  will  just  consider  that  we  are  looking  for  a  control

volume, which is maybe schematically, you draw it like this but that is not moving with the;

that is not moving with the arm.
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So, even if the arm goes to a different place, the control volume is fixed, so at that instant, we

are trying to; we are we are considering one particularly instant, when the control volume and

the arm they are coinciding and at that instant, we are trying to figure out what is happening.

Now, if you consider the inertial problem that is the inertial reference frame way of looking

into it, the left hand side is 0, right; the left hand side is 0 or null vector.

The right hand side; now, you see that with respect to an inertial reference frame, it will be

unsteady, right. If it was moving at a constant velocity relative to the reference frame then

sitting on the reference frame, you look it as a constant but standing from outside, which is

inertial  you  see  that  velocity  is  changing  with  time  because  the  frame  velocity  itself  is

changing with time.

So, this time derivative term with respect to an inertial frame will not go to 0, so the right

hand side therefore, you have to write this time derivative term properly. So, when you write

it, then let us write r again, r you write as ri cap because the volume, which is involved for the

control volume integral; this is a control volume integral, so their major part is the horizontal

part, then what is this V; what is this V?

(Refer Slide Time: 26:32)



This is velocity of the solid plus velocity of the fluid relative to the solid, so what is the

velocity of the solid at the coincident point at a radial location r, it is omega cross r, so this is

the velocity of the solid plus the velocity of the fluid or V relative or Vr, so this is omega rj+

Vri, right. So, we substitute that but before substituting maybe it is useful to find out how it is

r cross V.

(Refer Slide Time: 28:35)

So, that is omega r square K then, so you write this as omega r square then in place of dV, A

dr this thing K, right then plus, again you assume uniform velocity distribution, so when you

write the next term, then what should you substitute for this V? This one; yes, remember this

V has to be inertial reference frame V, so what is that? So, omega K cross with capital ri + aj

+ Vrj, right, so what will be that? Omega rj + omega a - i + Vrj.

(Refer Slide Time: 29:54)



So, if you make another r cross with that then, what is that r? That r is again this capital Ri +

aj, so what is that R cross; cross with that one, omega Rj - omega ai + Vrj, right. So, here if

you neglect small a, then like that is what is given in the statement of the problem, so just

neglect this small a part, so it is omega rR + Vr * capital R K, so the next term we will write;

yes, this is omega cross r is what?

So, if you consider a point here, the point first how do you consider; a coincident point in the

solid plus velocity  of the fluid relative to that  coincident  point,  okay that is the absolute

velocity  of the fluid,  Vr is V relative,  yes, so the same Vr that we used in the; even the

previous method. So, the next term is omega R square then integral of rho Vr dot eta dA over

the control surface with a K cap.

(Refer Slide Time: 32:03)



So, now what we do; we simplify the different terms just like what we did in the previous

case or in the previous method, rho is a constant that we are considering for this problem, so

we are taking that rho here out of the left hand side and right hand side. So, left hand side

equal to right hand side when we write, so 0 =; now you see, first of all we integrate with

respect to position.

So,  when you integrate  with  respect  to  position,  it  is  from 0  to  capital  R,  so  you have

basically, first let us complete the integral, so integral will be rho A omega capital R cube/3,

now a partial derivative of that with respect to time and then the remaining one + omega R

square * Rho, if the remaining term is Q/2 because remember no matter whether it is inertial

or non-inertial, these velocity is always V relative for flow rate part calculation okay.

Now, rho being constant A being constant, R being constant but 0mega is not a constant, so

you have rho A omega maybe by divided by 3 also sorry, rho A R cube/ 3 then you have d

omega dt +; now there has been a point, where I have omitted one term, where is that term?

This is your work to identify, you may get a clue by comparing with the previous method and

this method, they should at the end give the same result.

No matter, what is the control volume, so some term is omitted somewhere,  “Professor –

student conversation starts” which term? Vr *; where is that term? R cross v, so what is

there, no; you tell, I will just write; R * Vr * Q/ t, so one term because of multiplication of

this with R because of this with r that was omitted and not omitted just somehow not written

here, so that is equal to 0 “Professor – student conversation ends.” 

And this should give the same differential equation as what we obtained with a non-inertial

reference frame, it should not be fundamentally different, okay. So, what we have understood

is; that you may use different reference frames but when you go to your final analysis, the

final analysis should converge to the same conclusion. Now, what you may do a little bit of

modification of these that when you take the part small a, not very small that is a; it is of

substantial length.

Then neglecting it and not neglecting it will matter more for approach 1 or approach 2 that is

will matter more for the inertial frame based analysis or non-inertial frame based analysis that

is a bit of more thing that you can add with this one but again the principle will be very



similar then you do not neglect the terms with small a and just do the algebra and then you

will easily find it out.

Now, what we have seen here; so in this particular chapter, what we have discussed, in this

particular chapter we have found out how or we have learnt how to write the integral forms of

conservation equations for mass conservation,  linear momentum conservation and angular

momentum conservation.  In one case,  we have at  least  shown that  you may convert  the

integral form to a differential form and that is the mass conservation example which gave

back the continuity equation.

Let us try to see that whether we may do it for other cases or not, so now our objective will be

let us say, we take an example of linear momentum conservation, can we write a differential

equation for linear momentum conservation starting from the integral form, so that we will

do. 

(Refer Slide Time: 37:40)

So, the objective of the subsequent analysis is to figure out that is there a route from integral

form of  momentum conservation  to  differential  momentum conservation.  The differential

equations are important because in many cases, you want to get a point by point variation of

the velocity field or the pressure field like that so then you have to solve the differential form

not the integral form.

So, let us say; let us write, let us make certain assumptions; let us make first assumption is

that we have a stationary reference frame and number 2; that non deformable control volume.



Based on these, let us write the linear momentum conservation, so if you write the linear

momentum conservation, integral form, resultant force on the control volume is =; so we

have assumed straight away that it is a stationary reference frame.

(Refer Slide Time: 39:53)

So, that Vr is = V that is the first assumption that we add made and regarding the second

assumption, it will be possible for us to take this inside the integral. Now, we will concentrate

more on the left hand side and see this is a vector equation, so it has its different components,

so it may be convenient to express it in terms of a component, say in the direction i, we will

again start using the index notation somewhat.

(Refer Slide Time: 40:26)

So, i = 1 will mean x, i = 2 will mean y and i = 3 will mean z, okay, so let us write this for the

direction i, so we are interested to find out what is the resultant force acting on the control



volume in the direction i. Let us make a sketch and try to see, if you recall our very basic

discussions that we classified the force in continuum mechanics in 2 categories; one is a body

force, another is the surface force.

So, what is the body force? The body force is the force that is distributed over the extent of

the volume of the body, so let us call this as F surface for surface force plus F body, so when

you have the surface force that is distributed over the area of the surface, so when you have

area of the body, so when the body is like a control volume it is a force distributed on the

surface of the control volume.

So, now if you want to find out that what is the body force or what is the surface force first,

so if you consider small chunk of an element like this with a direction normal of eta. So,

when you have the direction normal as eta and how do you express the surface force at a

particular location? You represent it in terms of the traction vector that is the force per unit

area but it is dependent on the choice of orientation of the area.

So, let us say that Ti, let us say that T with superscript eta is a traction vector at this point

based on the chosen area say dA, right. So, this traction vector we may write in terms of

what; we may write in terms of the stress tensor components that we have discussed and

provided we know the direction normal of the area that is under consideration and which

theorem gives this? Clausius theorem.
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That is you have the traction vector; the ith component of the traction vector is given by tau ij

* this, remember that invisible summation sign for j = 1, 2, 3, this is actually not usually put

in the sign convention; in the representation convention. Fundamentally, it was tau ji * nj but

because tau ij = tau ji, how we have got tau ij = tau ji from angular momentum conservation.

So, usually you see that for fluids, we do not separately write many times angular momentum

conservation in a differential form.

because  it  is  already  inbuilt  with  some  of  the  considerations  in  the  linear  momentum

conservation, whenever we write tau ij = tau ji, so that is already inbuilt here and that is how

it becomes like this, so if you just expand it, so what is this; this is like if you have the unit

vector, it has its components along xyz as say, n1, n2, n3 are the direction cosines. Now, tau;

therefore, this one we can write; see i is an index which is there in the left hand side that

should remain also in the right hand side.

So, tau i1 n1 + tau i2 n2 + tau i3 n3, okay, can you express this as a dot product of some

vector with the n vector, what is your objective? The objective is; we will replace the area

integral in terms of the volume integral as we did for the continuity equation and because we

know the divergence theorem that relates these 2. For that we have to know; we have to get

something of a form of like some vector function dot with n dA.

So, that is why we are looking for a vector which dot with n gives the same thing, okay, so

the objective should be clear. Whenever we are doing an analysis, it is not that out of nothing

we are doing this manipulation that is the objective of the manipulation that we should keep

in mind, so whenever you convert from an integral to a differential form, the main way in

which you always do is by converting some of the area integrals into the volume integrals and

that by using the divergence theorem.
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So, you should make the all the terms compatible for use of the divergence theorem, all the

area integral terms at least. So, when you are trying to represent the surface force, what is the

surface force, F surface is? F surface i, so let us just write the i component, x component, so

when we call the components will not put a vector sign because the components are just the

scalar components.

So, F surface i will be what; traction vector is the force per unit area, so it is the traction

vector ith component times dA integral over the control surface; the surface of the control

volume. So, that will represent what; see, the control volume surface, if the control volume is

like a free body in mechanics, so if you have the internal action reaction forces within the

control volume they get cancelled out, only the surface forces at the outer boundary remains.
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So, it is just considered equivalent to a free body, so this; now, our objective is to write it as

some vector dot with n, so clearly if you see that if you write a vector say, tau i just give a

name of a vector like that tau i1 i cap + tau i to j cap + tau i3 K cap, then this term, is what?

This term is nothing but this tau i dot with n that you can clearly see because when you make

it a dot within, you see tau i1 is coming with n1, tau i2 is coming with n2 and tau i3 is coming

with n3, right.

(Refer Slide Time: 48:10)

So, we have formed an artificial vector, just to make use of the divergence theorem. So, we

may write this as integral of this new vector say, tau i dot n dA, what about the body force?

Let us say that Vi is the body force per unit mass, so Vi is body force per unit mass. So, how

do you express the F body? So, basically you take a small volume inside of dV, the mass of

that is rho * dV and the corresponding body force along i is Vi * rho * dV.

(Refer Slide Time: 48:51)



If you integrate it over the control volume, it will give the total body force along i, okay, so

we have been successful in writing the left hand side in a certain way for force components

along i, so the left hand side will become integral of over the control surface tau i dot with eta

dA + control  volume rho Vi dV, what  about  the  right  hand side? We will  take  the time

derivative term inside the integral because of non-deformable control volume.

(Refer Slide Time: 49:32)

Now, see we are writing the scalar components,  so in place of V we will  write Vi or ui

usually, the notations for velocities, we call ui, so u1 is like u, what we have learnt, u2 is like

v and u3 is like w, the usual notation for the velocity components. So, this in general when

you consider the ith direction, it is ui; i = 1 means x, i = 2 means y, i = 3 means z.
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So, this of rho ui, this V is replaced by its component along i and then the remaining integral

of rho, this  V is replaced by ui, okay, the next steps are quite simple, the next steps are

converting the area integrals into the volume integral, so that we may convert all the area

integrals into the corresponding volume integrals. 
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So, we should keep in mind that if you have a vector functions say, A, so A dot n dA over the

control surface is the divergence of A over the control volume, so this surface has to entirely

bounding the control volume. 

(Refer Slide Time: 51:09)



So, if you consider that and if you consider the left hand side is equal to the right hand side,

then what you get? So, the first term, this; so here this tau i is like the vector function that we

are talking about, so then what will be the left hand side? First term, if you convert into a

control volume term, divergence of tau i dV then integral of rho bi dV = the right hand side,

first term is already control volume term plus next term divergence of rho ui V, right. 

So, we now collect all the terms and if we collect all the terms you will get therefore, some

integral of some function dV = 0 right because all terms are of integral dV nature. And we

have seen that when we discussed about the continuity equation, same thing applies that this

volume that we have selected is arbitrary, so for an arbitrary elemental volume, if this has to

be satisfied, the integrand has to be 0. So, that means you have this integrand, let us say this

as i, so this i has to be 0. So, if i is = 0 then you are left with this particular form, okay.

Now, it is possible to express, see this is partially written in index form, partially written in

vector form but it is possible to write it in a proper fully indexed form, so if you have just

write  divergence  of  rho  uiV, this  in  a  proper  index notation  is  written  in  this  way. See,

divergence is what;  divergence is  what you will  have a term with partial  derivative with

respect to x, then partial derivative with respect to y and partial derivative with respect to z.

So, just like x1, x2, x3, some of these 3, so in this; so you can see that when you have a

partial derivative, so when you have the divergence here, the partial derivative with respect to

x1 should be involving x component of this V. When it is with respect to x2, it should involve



x2 component  of V. So, in general,  when it  is  with respect  to xj, it  should involve the j

component of the velocity.

So, actually it is a invisible summation from j = 1, 2, 3, okay, so you can clearly understand

the notation, it is very important and similarly how do you write this one? Now, you tell;

remember that what is this one, what is this tau i? Tau i is; it is; so you have the partial

derivative with respect to that component, so for j = 1, it is one component for j = 2 that is 2, j

= 3 that is 3.

So, in general tau ij, again there is an invisible summation, j = 1, 2, 3, right, so you can see

from this that is how their tau was defined from that. So, in that index notation, you can write

it like this, so this is an equation of motion, equation of dynamic equilibrium in a differential

form and this is known as Navier's equation of equilibrium or simply Navier's equation. So,

we have been successful in writing an equation of motion along the direction i.

If you put i = 1, it is x, if you put i = 2, it is y, if you put i = 3, it is z, now you see what is the

complication of this equation? The complication of the equation is as follows, you do not

know this tau ij that is you do not know the stress tensor components, so you must know to

make  its  closed  system of  equations,  you must  know the  stress  tensor  components  as  a

function of the velocities or their gradients or pressure on all those quantities.

So,  it  should  be  expressed  in  terms  of  these  primary  variables,  which  are  velocity  and

pressure or their gradients and that varies from one fluid to the other, till now we have not

assumed that it is a Newtonian fluid or whatever, so we will see in the next class that now we

will make some special assumptions of the type of fluid because based on the constitutive

behaviour of the fluid this tau ij will be dependent on the velocities, pressures or maybe the

gradients of velocities.

And we will assume a special case of a fluid known as Newtonian and Stokesian fluid and in

that special case, this equation will be simplified to a form known as Navier Stokes equation,

so that we will do from a next class. Thank you.


