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We continue with the example that we were discussing in the last lecture that that there is a

tank and through the bottom of the tank the water is being drained out and the height of water

in the tank is  therefore changing with time.  Our objective  is  to  find out  how the height

changes with time. Now we were discussing about what is the significance or impact of the

unsteady term that is retained or that should not be retained or should be retained is our doubt

in the Bernoulli equation.

Now if you try to approximate it in some way. See in engineering we try to get a feel of the

order of magnitude. So we may try to approximate it by a certain term which should be like

our derivative of velocity with respect to time. Time some height. So let us say that if this

dvdt was a constant if it was a constant not that it is a constant. If it was a constant, it could

have come out of the integral and then it would have been some equivalent constant dvdt

times s2-s1.

So s2-s1 maybe roughly like the height if you take the streamline which is just along the axis

then it  is  exactly=h,  but you cannot  just  write  it  as sum equivalent  dvdt*h because V is



changing with time in an unknown way so you do not have really an equivalent constant

dvdt, but you may make a kind of approximation. You can say that I approximate this dvdt

with dv1dt.

Why if you see that except for very close to the outlet the streamlines are almost parallel to

each other and when the streamlines are almost parallel  to each other it represents a case

when that v is not varying very much. See why v is varying see there is a flow rate confined

between these. So when the streamline the distance between these two streamline remains the

same you have to say A1 V1=A2 V2.

So A1 is like this A2 is like this both are like as the cross sectional area with the streamline as

envelope. In fact, you can have a large number of streamlines their envelope will look like an

imaginary pipe or a tube that is known as a stream tube. So it is a collection of streamlines

making an imaginary tube within with the fluid is flowing. So if you consider such a tube you

can always see that the extent of that tube that remains almost the same till you come to the

exit where it is really accelerating.

Because now the area available to it is so small that it has to get adjusted to itself. So when

the area is  very small  and it  has to get  adjusted to  itself  that  is  only a  small  portion in

comparison to the tank extent. So if you approximate this dvdt with dv1dt it is wrong, but it

will give us some picture some idea what is the effect of what is the impact of this term? So if

you make an approximation that this is=dv1 dt times h.

You have to remember that both are functions of time h is a function of time v1 is also a

function of time. So if you write this equation in a bit different way you can write say v2

square-V1 square/2+ or – g V1-V2= - of and z1-z2=h which is itself a function of time. So

these are valid locally at each and every interval of time at that time you have dvdt and you

have an h.

Now if you try to compare different term say we want to compare these term with these term.

So if these 2 terms are compared then let us say this is term A and this is term B. So when can

you neglect term B in comparison to term A when you have this mode of this/ mode of gh

when this is much, much <1 then B is much < A. So if the condition well h is something

which you do not consider locally because this is like h is always a local constant.



That means whatever h is a function of time here in term a same h is there in term B. So only

that means you are comparing dvdt with g. So the rate at which the change of velocity of the

free surface it is there that is it is sort of acceleration if it is comparable with the acceleration

due to gravity then you cannot drop this term and then you should retain this term at least

frame a differential equation it cannot be solved analytically.

But if this is the case which is true for most of the practical cases then it is possible to drop

this term. The second important point is irrespective of whether you drop this term or not A1

V1= A2 V2 is what you are always using. The reason is straight forward the origin of these

does not come from steady flow. Although this is valid for steady flow it does not mean that it

cannot be used for cases when the flow is unsteady.

Because the fundamental way in which it was derived from what from a continuity equation.

First by dropping the partial derivative of rho with respect to time=0. So if rho is a constant

partial derivative of rho with respect to time is 0. It may still be unsteady flow because the

velocity may be function of time, but rho not being a function of time was the first thing to

drop the first term in the continuity equation the derivative with respect to time.

For the other terms then how we came up with this we integrated this that differential form of

the continuity equation and then if there say rho at the inlet and the exit sections are equal

again if rho= constant that is valid then you have A1 V1=A2 V2. So a very important thing is

for A1 V1 for A2 V2 to be satisfied it is not necessary that it has to be a steady flow only

thing rho should not change that is a very important thing that we have to keep in mind.

So even when it is varying with time you can use that. Now let us say that this is the case so

that we can drop the term B. So if we can drop the term B then you can write V2 square- V1

square/2=g h. Now what is V2 or you can express V2 in terms of V1 so V2 is V1* capital D

square/ small d square. So it is V 1 square capital D square/small d square -1/ 2=gh. And the

remaining work is very straight forward.

You can find out so V1 is of the form sum constant *root 2 gh where that constant is basically

D square/d square-1 by that okay square root of that. See this gives a contradiction what is the

contradiction? When small d is very small you consider the limit as small d/ capital D tends



to 0 that it is a very big tank of a large cross section area and there is a very small hole

through which the water is coming down.

Then how does this work? Yes, how does this work? C is almost if c is almost 0 then V1 is

almost 0 I mean practically it is true that if it is a tank of very large area and if there is a small

hole the velocity at which the free surface is coming down is not perceptible it is very small

so that is okay. Let us not bother about that too much. Let us just try to complete this one by

writing this as –dhdt= c root 2 gh.

Now if you integrate with respect to time you can find out how h varies with t this is a very

simple work. Now try to relate this with a kind of again formula that you have used earlier in

your studies. So let us think that this hole is not located here, but located at the side. This is a

different example just I am drawing in the same figure to save the effort. So let us say that

now this height is h which is changing with time.

So there is no hole here, but there is some hole here. There is a nozzle that is fitted and water

is coming out. So when you are doing that the way in which most of you have done is like

you have assumed the velocity that which the jet is coming out is root 2 gh. This is known as

Torricelli's  formula.  So how you have  arrived  at  that  equation.  You have  used Bernoulli

equation between 1 and 2 at that time you are not very careful about whether they are along

same stream line or not just out of pleasure you are applied between 2 points.

And then when you applied between 2 points you put V1=0 you put p1=p2 the different

between the 2 height h and so V2 will come root 2 gh. So what are the assumptions under

which that is validated that is not a very bad formula. Torricelli's derived it long back I mean

in a historical perspective it is a great development because nowadays we can speak these big

words but the subject when it was fundamentally developed this itself was not a very trivial

matter to resolve.

So then when Torricelli's found out this expression what are the assumptions in which these

expressions you expect to work still. So one of the things was taken as V1=0 that means

V1=0 when capital D is much, much > small d. So V1 is approximately tending to 0 the other

approximations are that you are having a streamline like this with respect to which you have

the points 1 and 2.



And the unsteady term does not appear in that analysis and it is assumed to be an inviscid

flow. The greatest deviation from realities is because of the assumption of the inviscid flow.

So that is one of the very important features that we have to keep in mind. So with that

assumption this formula is not illogical, but a very important thing is we must keep in mind

that some of those assumptions are to be questioned.

One of the important assumption is like capital d is much, much > small d which is true if it is

a very large tank and from that there is a small hole through which water is coming out and

dropping  of  the  unsteady  term and  we have  discussed  that  how this  unsteady  term this

particular term in what condition it may be dropped or not. So this is a very simple problem.

But if you try to look into this problem very carefully it will give you a lot of insight on the

use of Bernoulli  equation under different condition.  And I  would encourage you to think

about it more deeply under what conditions different terms are important in different ways

not just satisfied with finding h of the function of time, but to write the differential equation

of maybe say V1 as a function of time in a very simple case and in the most general case.

And try to compare them that what are the terms that are making them to be different. We

will consider another example in the unsteady Bernoulli equation in the use of the unsteady

Bernoulli equation that is given by the next problem.
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Let us say that you have 2 plates these are circular plates. We have solved problems with



rectangular plates just for a change let us consider that it is a circular plate. So this is like this

plate is coming down with a uniform velocity V. And this is a circular plate. The radius of the

plate is r and say we are considering a coordinate system the local coordinate as small r. So

small r is the local coordinate at a radius r.

Now with this we are interested to see so the bottom plate is stationary. There is some water

with rho=constant and when this plate is coming down what is happening water is squeezed

out of the plates because whatever water was there say originally this was B0. So B= B0 at

time=0, but as this is coming down this B is changing B is decreasing. So where will that

water go that water will be squeezed out radial to make sure that the continuity is maintained.

So we are interested to find out how the pressure varies with R. Assume inviscid flow and

flow is constant that we have already defined or we have already assumed. So as we have

seen that in all these cases it is important to get a feel of the velocity profile. So if it is an

inviscid flow the velocity variation over the section is not there so that velocity is uniform

over each section, but these uniform velocities is changing with radius.

So how you can find out it you have to think that what is the rate at which this is pulling

water downwards with the same rate at which it is being squeezed out. So if you consider a

local radius R what is the rate at which this is coming down. So when you write A1 V1= A2

V2 question is how do you write V1 V2 A 1 and A2. What is V1? V1 is the rate at which so it

is like an artificial flow imposed by the movement of the top plate.

So that flow velocity is given by V1. So what is that A1 *. So what is A1? So if you consider

only up to a local radius of small R. So A1 is pi* small R square. So A1 is pi* smaller square

what is V1? V1 is V because this is a uniform rate. This is uniform this is not a function of

time this is constant= what is A2 2 pi r*B.  B is a function of time * V2 or V as a function of

R. Let us write Vr just to emphasize that it is v at a radius R.

So you can write V at a radius R= V divided by Vr/2v. Now so this is a velocity at a radius R.

Next we are interested to find out the pressure. So if we are satisfied with inviscid flow and

flow= constant we can consider a streamline that connects two points. Any 2 points say 1 and

2. So the streamlines how the streamlines will look. So the streamlines will virtually look like

this.



So the flow is being squeezed out in this way so that is how a streamline will look. So let us

take any 2 points located on the streamline and write the Bernoulli equation between those 2

points located on these identified streamlines.

(Refer Slide Time: 20:07)

But because it  is  an unsteady flow we need to retain  the unsteady term in the Bernoulli

equation. So p1/rho + V1 square/2+gz 1= p2/rho+V2 square/2+g z2+ let us say that we apply

that between 2 points. One point is located at R= small r and another point 2 is located at R=

capital R. So when you have such a case you are getting rid of many things. One is between

the points 1 and 2 there is no difference in height.

So of course if this gap B itself is narrow then even if there was a change in height because of

taking the points 1 and 2 not exactly along the same line that term itself is not that large, but

like if you take them along the same horizontal lines they are identically the same. Then you

are interested to find out p1 and p2 you know p2 is the atmospheric pressure. So because it is

at the exit plane.

So you are interested to write p1-say p2 is p atmospheric p1-p atmospheric/ rho= now v2

squares- v1 square/2 so V2 square- v1 square/2 is V2/ 4 b square * capital r square-small r

square because V is having only this component. Then + this term so by 2 will be there. 8 b

square then + let us calculate the third term.
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So what is the partial derivative of V with respect to t that is the partial derivative of Vr with

respect to t that is the only v component that is there which is a function of t here. B is a

function of t here. So this will be- Vr/2 b square * db dt and –dbdt=V. So –dbdt=v. Just like

the previous tank problem that we were considering. So this term becomes v square r/ 2 b

square.

So that you can substitute here and ds will be dr because you have chosen your streamline in

such a way that the change in s is like change in r.

(Refer Slide Time: 23:39)

So this is from integration from small r to capital R v square r/2 b square dr very straight

forward to complete it. It becomes v square/ 4 b square* capital R square- small r square. So

at a given instant you can see the pressure at the radius small r is varying with time because b



is a function of time. So this only a given instant you can say. So at different instance you

have different values of b.

And you can find out what is the value of b at a given time how because you know dbdt is –v.

So b= b0-vt. So if you are given a particular time so this will give you b=b0-vt. So if you are

given a particular time you can find out what is the value of b at that time then you may

substitute the value of b at that particular time to get the pressure at a radius. So you can

clearly see that the unsteady Bernoulli equation how it can be utilized.

Now the next topic that we are going to discuss in the context of these Bernoulli equation is

the  use of  such equations.  See the  Bernoulli  equation  has  been one  of  the  very  popular

equations in fluid mechanics not just because of its simplicity, but because of its applicability

in an approximate sense in terms of quantifying the nature or the principle of working of

many engineering devices.
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And we will look into such examples of applications of Bernoulli equations. So some of the

examples we will not detail very much, but we will only get the essence the details of most of

these examples are uploaded in a course website note on the application of the Bernoulli

equation. So if you go through that in details you will get all the detail picture because we are

going to discuss subsequently about certain devices.

These devices  have certain intricacies  and we will  only highlight  the major or important

features, but for the other detail feature you should refer to those notes. Now before coming



to any device of very great engineering application we may come up with a sort of a very

primitive device which you have already heard of something called as a siphon. So if you

have say water in a tank like this.

And you are having a  bent  tube which is  sort  of  sucking water  and ejecting  water  to  a

different place from the tank so this is called as a siphon. The apparent amazing features of

the siphon is out of nothing it is pulling the water in a upward direction that is the apparent

amazing feature, but if you look into it a bit carefully it is not at all any amazing feature

because eventually when it is discharged it is discharged at a level below.

So the actual head difference which is working on it is this one which is a favorable one

because effectively it is coming from this elevation to this elevation and this net elevation

difference is actually giving it a velocity. So with that velocity the water is being sucked. So

the fact that is going up is nothing very special because eventually it comes down and it gets

ejected from height which is less than or below the level of the tank.

But the good thing is that while doing it can traverse a vertically upward distance. Question is

how much distance it can vertically traverse? So what should be this say if you call this as h

then what is this h max? This is given by a practical consideration. Let us try to identify a

streamline which connects the points say streamlines will be bent like this, but let us just

consider a streamline which is confined between that points 1 and 2 which are almost like

located on a vertical line.

(Refer Slide Time: 28:50)



So if we are interested to write the Bernoulli Equation we can write p1/ rho+v1 square/2. So

every  time  whenever  we  are  writing  the  Bernoulli  Equation  we  are  not  repeating  the

assumptions,  but you should keep in mind that what are the assumptions on the basis of

which we are writing it. So p1/ rho+ v1 square/2+ gz1= p2/rho +v2 square/2+ (()) (29:14).

Now you can clearly see that at the level 1 you have pressure as the atmospheric pressure.

So this is p atmospheric. V1 is approximately=0 just like the Torricelli's equation because the

area here is so large that the velocity with respect to which this level is changing is very small

as compared to the velocity here v2 is same as the velocity at which the jet is ejected here if

the area of cross section remains the same. So V1 is small because A1 is large as compared to

the area available at 2.

Then V2= Vj that is the velocity at which the jet is coming out if the cross section is same

and you can find it out that Vj is nothing, but approximately root 2 g * capital H by writing

the Bernoulli equation between 2 points on the same streamline whether if you continue with

that streamline it goes like that and comes out. So the net elevation difference will remain this

one.

If you write the Bernoulli equation of a streamline between say point 1 and say point j which

is located here. Now when you write that one what you will get? You will get p2/rho= g* z1-

z2. So g* z1-z2 is –gh- vj square/2. So you can clearly see that if you take the atmospheric

pressure as 0 reference. So this is written by taking atmospheric pressure as 0 reference. So

this is a like a (()) (31:22) expression.

So when you take the atmospheric pressure as 0 reference then p2 is negative because h is

positive vj square is positive. That means the pressure at this point is below atmospheric. So

if it is below atmospheric it may come to a state when it comes to the local vapor pressure. So

when the pressure falls below the local vapor pressure then what happens then vapor bubbles

are formed.

So when the vapor bubbles are formed. So when the vapor bubbles are formed it is nothing

very  special  that  vapor  bubbles  are  formed,  but  what  is  special  is  that  when this  vapor

bubbles are transported or moved to a different place where the pressure is again higher they

will collapse again to formal liquid and once they collapse what happens basically then they



were occupying a large volume, but when they collapse again to be converted to liquid again

there is a volume change.

So it creates an unsteadiness in the flow and it can create a lot of vibration and noise and that

is not so good for the flow and that type of phenomenon is known as gravitation. We will see

in details what is cavitation when we will be discussing about the fluid machinery which will

be our last chapter in this particular course. So we will not go into the details of like what is

cavitation at this stage.

But we have to keep in mind that it is better if we keep the pressure at 2 below the local vapor

pressure  that  is  below  the  vapor  pressure  which  should  be  there  at  that  corresponding

temperature so that vapor is not formed. So that means we are keeping a restriction that p2

must be less than the vapor pressure at that local temperature of the fluid. So then you can see

that you get I h max from that.

And that is the maximum h with respect to which you should design your system. So that you

do not have a problem with formation of vapor. So the siphon in principle maybe designed to

be very like tall in height in terms of this vent tube, but in practice one should not make it too

tall because if you make it too tall it is possible that the pressure is so low that vapors are

formed and that can create other disadvantages in terms of operation of the device.

The next application when we consider we will keep in mind that now whatever applications

we are going to study our objective will be to have a Bernoulli equation utilized in devices

through which we are interested to measure the velocity or flow rate in a pipeline.

(Refer Slide Time: 34:10)



So let us take an example let us say that you have a pipe like this a horizontal pipe. Now

water is flowing and you make certain holes in the pipeline. What holes you make? So first

you make a hole like this so when you make such a hole what will happen the water will rise

and it will come to a height. The height with respect to which the water rises will be an

indicator of the local pressure at that location.

Pressure at (()) (34:52) we are interested about the central line. So if we are interested about a

point in the central line what we are doing we are sacrificing one thing we are not able to

exactly probe at the central line at the same actual location we are proving at a point which is

different from the central line and we know that it is very much possible that the pressure at

the central line should be different in general from pressure at this.

When they are different when you have a curvature of the streamline. We have just in the

previous lecture seen that if you have the gradient of pressure in the direction of n you will

only when the streamlines have a radius of curvature which is non infinity, but here if we

consider that the streamlines are parallel to each other then you do not have that effect of the

stream line curvature in terms of the pressure gradient.

So whatever is the pressure here should be the same as the pressure here. So then this is an

indicator of the local pressure. Now say we are interested to have an indication of the velocity

so for that what we can do we can have another tube where we make a penetration in the

wall, but before that we have the tube directly confronting with the flow. So this tube and this

tube is different this is not directly interfering with the flow.



But this is directly interfering with the flow. When it is directly interfering with the flow it is

bringing the flow to a standstill or a dead stop. So it is creating like a stagnation point where

the flow comes to a dead stop it cannot go further. So whatever water was coming here it

comes to a dead stop what it will do it will it (()) (36:39) tube and the question is will the rise

will be > this one or < this one. See this rise was the function of the pressure.

Now the entire energy which was there in the flow if we assume that assumption on the

Bernoulli equation those are valid. Now we have made the kinetic energy to 0 so the entire

energy now contribution of pressure term plus the kinetic energy term will be successful to

make it go further up because where will that energy go you have made the fluid to a dead top

you are assuming that is a frictionless flow.

Then where will that energy go. It will obviously make the fluid rise to a greater height and

the  difference  between  these  2  heights  is  if  this  points  are  very  close  to  each  other  the

pressure almost the same the difference between these 2 heights is just v square/ 2g. So from

this principle V is the velocity of flow at this point. So from this principle it is possible to

make an estimation of the velocity and if you know the estimation of the velocity.

And if you assume it to be uniform then you can also have an estimate of the flow rate. Now

if it is not uniform you can keep it at different radial locations and you can even find out how

velocity varies radially because these tube you can put at different radial locations. So this is

put at  r=0 at  the central  line,  but you can also keep it  away from the central  line.  So at

different radius if you put it will give you a picture of velocity at different radius.

So it is possible even to get a velocity profile if this is quite accurate of course there are many

doubts  about  the  accuracy  of  such  a  simple  arrangement,  but  it  gives  as  a  conceptual

understanding.
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So the device is based on this conceptual understanding is known as a Pitot Tube. So the last t

is silent so it is pronounced as Pitot Tube. So this of course is to honor the name of inventor

of this device and it is a very simple device and the working principle of this device is based

on 2 important definitions which we will tell now. One is known as static pressure. So what is

a static pressure?

Static pressure is the pressure which is there because of the intermolecular collisions so that

means if one is moving with the flow then what is the pressure felt because of just moving

with the flow is the static pressure. So this is a pressure experienced in moving with the flow.

So  this  is  the  result  of  the  intermolecular  collision  and  this  is  the  pressure  that  we

fundamentally define.

Now we are also going to define something called as stagnation pressure. So what is the

stagnation pressure? Stagnation pressure is the pressure that is there at a point if the fluid is

subjected to 0 velocity at that point in a reversible and adiabatic manner. So pressure at a

point at which fluid is subjected to rest in a reversible and adiabatic. We will not go into the

details of the reversible and adiabatic processes.

Because these you will learn more in details in the thermodynamic course that we will have

subsequently,  but  important  understanding  in  our  context  is  that  one  of  the  important

requirements of this is it is a frictionless flow. So that means when the fluid is subjected to

rest at a point you have to make sure that it is subjected to rest in a frictionless manner. So

whatever is the pressure that these tube is getting is the stagnation pressure.
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So this  is  also  known as  stagnation  tube  because  its  reading  gives  an  indication  of  the

stagnation pressure and this is known as the static tube. So if you want to write the Bernoulli

equations between 2 points 1 and 2 which are located in such a closed manner that point 1 if

you have pressure as Ps or say p1/rho+v1 square/2. We are not writing g z1 and g z2 they are

so close that the difference in height is negligible= p2/rho+ v2 square/2+ g z2 we are not

writing again.

So what is V2 V2 is 0 because it is a stagnation point. So the definition of the stagnation

point is velocity is 0. So you can see that you can write p2 which is the stagnation pressure as

p1 which is the static pressure. This is same as p1 this is p static+ 1/2 rho v1 square that

means stagnation pressure is a sort of property of the flow if you know the velocity of the

flow.

But you have to  keep in  mind that  this  equation  is  derived by considering  a  frictionless

condition. And frictionless condition is valid when you are subjecting the flow to rest in a

reversible and adiabatic process. So the definition of the stagnation pressure is to be kept in

mind. Stagnation pressure is not just  pressure at  a stagnation point.  What is a stagnation

point? The stagnation point is a point where you have 0 velocity, but it does not mean that

pressure at that point is a stagnation point.

Pressure at that point will be a stagnation pressure only if the flow is subjected to rest in a

frictionless  manner  because  the  stagnation  pressure  is  defined in  that  way. It  is  not  just



sufficient it is necessary that you must have the velocity to be 0 at that point so that the

pressure (()) (43:36) is a stagnation pressure, but at the same time it is not velocity subjected

to 0 in any way, but it is subjected to 0 in a frictionless way.

The second important thing is since these points are very close to each other and you can just

say stagnation point stagnation pressure at a point just as a property which is dependent on

the local velocity. So stagnation pressure did not always be measured through a stagnation

point. So if you want to say find out stagnation pressure at a point you can simply say that it

is  the  static  pressure which is  the  regular  of  the normal  pressure + 1/2 rho v2 that  is  a

definition.

So the stagnation pressure does not mean that you have to bring the fluid to rest at that point

to get a pressure. It is like how you physically conceive that pressure not that. So it should not

give you the false idea that whenever the velocity is non 0 stagnation pressure is not defined.

It is definitely defined. It is just a physical way of looking into it interpretation. Now the next

we will discuss 1 or 2 important flow measuring devices.
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And  the  first  device  that  we  will  discuss  is  known  as  a  venturimeter.  So  what  is  a

venturimeter? Say you have a pipeline and you are interested to measure flow through a

pipeline. So what you are trying to do say you have a pipeline like this you want to measure

what is the rate of flow through the pipe? So how will you do it there are many ways in which

it can be done is one of the ways is by utilizing a device called as venturimeter.



So what is done a part of the pipe is like replaced with a device. What is that device? The

device is like this so you have an accelerating section by having a converging cone and then

you have a zone of uniform cross section and then you will again come back to the pipe

dimension. So this is known as diffuser. This is a known as a throat and this is a converging

section.

So what is the objective? The objective is by this way you are reducing the cross sectional

area. So to maintain the continuity in a steady state what you are doing. So if you consider

now the points let  us say that  you consider  points  1 and 2.  The point 1 was having the

velocity as same as that of the velocity of flow in a pipe. Now at the point 2 the velocity will

be more or less. It will be more because the area of cross section has reduced.

So since the velocity is more. Now if you write the Bernoulli equation assume that it is a

friction less flow. Then p/rho+ g z that term will be what that term will be changing and if we

can find out a measure of that change then it is possible to find out the velocity through the

Bernoulli equation how we do that? Now let us say that you make a tapping of a manometer

that means let us say that you consider a hole in the pipeline and a hole here.

And connecting that with a manometer. So when you are connecting that with a manometer

see we have not taken the point 1 at the inlet of the converging section, but at some location

which is sufficiently away from that because here the streamline curvature effect will tend to

become more and more dominant. So you want to take it away from such a place where the

streamlines are almost parallel to each other.

So pressure at these point and maybe pressure at these points should not be very different

because of the streamline curvature effect. So we are having a manometer in which we have a

fluid. Now in which limb the fluid height will be more or in which limb it will be less. Let us

write the equation the Bernoulli equation along the streamline between the points connecting

the points 1 and 2.

So let  us say you have a streamline  that  connects  1 and 2.  So you can write  p1/rho+v1

square/2+g z1= p2/rho+v2 square/2+ (()) (49:23). At the point 1 if you have this as the height

of the limb and at the point 2 if you have this as the height of the limb. Now I have drawn it

in this way. Do you accept that it should be like this? let us a fluid a marker is there as a



manometric fluid here.

We call it rho m the density of the mercury. Now is it an acceptable sketch in this case the

remaining is filled up with water. So if water is flowing through this tube let us say this is

filled with water. The same fluid which it is flowing here. So is this acceptable? By this you

are expecting that pressure at 1 is > pressure at 2. We will see that may not be correct also let

us see.

But  this  figure is  correct?  How that  is  possible  let  us see.  So let  us  say that  this  is  the

difference in height that we measure so that is = delta h. So when you measure this height

delta h then from that delta h it is possible to write the equation of the manometric principle

that is you can write that if you have 2 points A and B at the same horizontal level you have

PA= PB.

So when you write PA= PB. Let us say that you are writing say this is your reference for

measuring z1 and z2 in the Bernoulli equation. So this is your z1 and this is your z2. You can

use any datum, but this is a convenient datum.

(Refer Slide Time: 51:27)

So you can write p1+rho g z1 that is= pressure at 8 where rho is the density of the water that

is flowing through the pipe=P2+ rho g z2- delta h+ rho mg delta h. So when you are finding

out the difference in p1 and P2 p1-p2 you see that you can clean up the expression by noting

that it is not just p1-p2 that is important. You have p1+rho g z1- p2+ rho g z2 that is what is

going to be important.



So if you write p1+ rho g z1- p2+ rho g z2 then that is rho M-rho * g * delta h. So in this

figure you are expecting that delta h is positive. Isn’t it? This is just the dimension. Rho m

say this is mercury so we know that it is much heavier than water. So rho m-rho is positive

that means we are expecting this to be positive. So what this reading gives us. This reading

gives us not the difference in p1 and p2, but the difference in sum of p1+rho g z1 and p2+ rho

g z2. So it is not giving us the pressure difference. So what it is giving us.
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So let us write this in a bit more explicit way. So let us write it as p1/rho g+z1. So we are

dividing it by rho g. So p2/rho g because we know that in this process we will get something

called as head which we use as a terminology for this calculation. So this is rho m/rho-1*

delta h. This delta h is very important because this is what experimentally you can read. So

when you read experimentally delta h you see that it is an indicator of not just the difference

in pressure, but the difference in pressure head+ the elevation.

So when it is flowing from 1 to 2 it is possible that p1 < p2, but p1/rho g +z 1 is> p2/rho

g+z2. So this flow is taking place from a higher value of this collected term to a lower value

of  this  collected  term.  This  collected  term which  is  given by p/rho  g +z is  known as  a

piezometric head. So p/rho g+z this is called as a piezometric head. Why it is called as a

piezometric head?

The reason is that if you say have a pipe and if you puncture the pipe or if you penetrate the

pipe say and if you have a tube through which the water goes up. It is just like that static tube



that we considered in the previous example then the elevation that it  assumes here is the

elevation because of its vertical location + because of the pressure at static pressure at that

point and this tube is commonly known as a piezometer tube.

So that is why the name piezometric head. So in the manometer in this kind of an example we

do not measure the pressure difference, but we measure piezometric pressure or piezometric

head difference. In terms of head it is called as piezometric head. If you express in terms of

pressure units,  it  is  called  as piezometric  pressure.  So always keep in mind.  In this  case

manometer is not measuring pressure difference.

It is measuring piezometric pressure difference. These are very, very fundamental mistake

that people make. See as I told in a very introductory class that we are bound with certain

intuitions that it will flow from high pressure to low pressure and you can clearly see that

with a very simple example where it is not actually a practical example because we have

considered a frictionless flow, but even that it gives a very important insight that it did not be

from a higher pressure to low pressure.

It  is  basically  from  a  high  piezometric  pressure  to  a  low  piezometric  pressure.  Now

fortunately what is important for this equation is only the piezometric pressure because if you

see like if you write it in this form you will get p1/rho g+z1-p2/rho g+z2 that is= v2 square-

v1 square/2 g. So this is something which is a very simple term for us now because from the

manometer we have got an explicit expression for that is rho m/rho-1 * delta h.

So this we can write as rho m/rho-1* delta h and this is = now you can express V2 and V1 in

terms of the volume flow rate. So if Q is the volume flow rate.
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Then you can write as Q=A1 V1=A2 V2. Again what are the assumptions? Rho is constant

and it is a uniform velocity profile over the section that is inviscid flow. Viscous effects are

not there. So you can write V1 as Q/ A1 and V2 as Q/ A2. So if you substitute that in this

expression.
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It is possible to express V2 square-v1 square as Q square/2 g*, no this g is there so because of

division by (()) (58:24). So Q2/2g* 1/A2 square- 1/A1 square= rho m/rho-1* delta h. So from

here, you can solve for what is Q? Remember it is very theoretical. Why it is theoretical

because it has considered many idealizations which do not actually occur in practice. So we

will keep this in mind and in the last class we will try to identify that what are the idealization

which were here which need to be rectified.



And what are the important design considerations that should go with this device matching

with the non idealization. That we will discuss in the next class, but if it was ideal just by

getting the delta h reading you could get what is the flow rate through the pipe because A1

and A2 you know are the areas of cross sections of 1 and 2 which are given geometrical

parameters. So we stop here today we will continue with that in the next class.


