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Dynamics of Inviscid Flows

Today, we are going to start with our discussion on dynamics of inviscid flows.
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In the last chapter, we were discussing about the kinematics. So we were not discussing about

the forcing parameters, which are involved to influence the flow. So we have discussed about

the motion. Now we are going to see that what are the forcing parameters, which influence

the motion and how they are related to the motion. When we talk about inviscid flows what

we essentially  mean is  initially  we will  discuss about cases where viscous forces are not

present.

So it is a simplified situation of the reality but at the same time, it will provide us with a lot of

important insight, which we will use later on when we will be discussing about the dynamics

of viscous flows. So when we will be considering or focusing our attention in this particular

chapter, we will be considering cases when viscous forces are not there or negligible. To start

with a discussion on this what do will try to do?

We will try to write the equation of motion for a fluid element where viscous forces are not

present. So when viscous forces are not present, the kinds of forces which are there are the



surface forces in terms of the normal components, which are manifested through pressure and

some body forces which maybe like the gravity forces. Keeping that in mind let us say that

we want to write the equation of motion for a fluid element.

Let us say that it is a 2-dimensional fluid element, it need not always be 2-dimenisonal but if

we are writing the equation of motion along a particular direction, then like for simplicity we

can take it as a 2-dimenisonal one for illustration. So let us say that we take a 2-dimenisonal

fluid element as an example, fundamental it is always 3-dimensional so the third dimension

you may consider as 1 or some uniform third dimension.

Let us say that these dimensions are delta x and delta y. We will quickly identify what are the

forces, which are acting on the fluid element only along x. So we will identify forces along

the x because we are interested to write the equation of motion along x. So other forces we

will not show, so it is not a complete free body diagram, only the x component of forces will

be shown. So here you have force due to pressure.

So if p is the pressure here then p times delta y maybe times 1 where 1 is the width is the

force that acts on the left phase due to pressure. Force that acts on the right phase due to

pressure is what we have encountered such situation earlier, so p+this*dx times delta y*1.

Along x these are the only surface forces because other phases will have surface forces along

y, body force maybe there.

Let us say that bx is the body force per unit mass, so rho*bx*delta x*delta y is the body force

component along x because rho*delta x*delta y is the mass of the fluid element. So we can

write the Newton second law of motion for the fluid element. That is we can write resultant

force along x=mass of the fluid element times acceleration along x, maybe you can write

delta m, it is a small mass to acknowledge that.

So we will try to simplify this expression. Resultant force along x is p*delta y-p+this one

with respect to*delta y. This thing then+rho bx delta x delta y=the mass of the fluid element

is what? rho delta x delta y times acceleration along x. What is acceleration along x? This we

have discussed in the kinematics. So what is that? This is the acceleration along x. This we

have derived in a kinematics.



See when we were discussing about the rigid body type of motion of fluid elements, then we

did not use this expression, we were using an expression as if the entire fluid is having a

particular  acceleration,  this  regarding  the  deformation  within  it.  So  now  the  different

gradients of velocity will become important, which was not there or which we kept ourselves

abstracted off when we just wrote some acceleration when it was moving like a rigid body.

Now we are more detailing it, so we are looking into the detailed expression that reflects that

acceleration. So this is acceleration along x. Now you can cancel various terms. So first this

term will go away and then like you will have okay let us just correct it a little bit it was delta

x right, we did not consider it delta x, so just change this dx to delta x because we took our

element as delta x.

And then we cancel delta x*delta y from all the terms because these are small tending to 0 but

not actually=0.
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So what we are left with we are left with the simplified expression+rho bx=rho. This very

simple expression is also known as Euler’s equation of motion along x. Similar expressions

we can write for the motion along y and z. We are not repeating it because it is very trivial.

Now what does this equation of motion contain, if you look into it, it is fundamentally like

Newton second law of motion where viscous forces are not considered.

So this right hand side is something like the mass*acceleration. Left hand side is the effect of

the force which is acting. So one force is because of the pressure gradient and another force is



because of the body force. So these 2 forces are considered, so it is just a different way of

writing Newton second law of motion for a fluid where viscous effects are not present and

any other force other than this body force of this particular form we are not considering.

Let us take an example to illustrate that how we can make use of this.
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The example is like this let us say that you have a velocity field v given by say Ax i-Ay j

where A is a constant number and the dimension number to adjust the dimensions in the 2

sides. We are interested to find out what is the difference between pressure at 2 points given

by x1, y1 and x2, y2. It is given that g that is the acceleration due to gravity acts along

negative z direction.

So  the  question  is  what  is  the  difference  in  pressure  between  these  2  points  okay. The

problem is very simple but it will at least give us some idea of how to make use of this

expression. A and B are not functions of time, so it is a steady flow field. Let us write this

equation say along x for this one. So if you want to write this Euler’s equation along x, so we

have – of partial derivative of pressure with respect to x+what is bx?

There is no x component of body force. Body force only acts along negative z, so this+0=rho.

Velocity field is not a function of time here; A is a time independent constant that is given. So

the time derivative will be 0. Then so what is u and v here? This is u and this is v okay with a

–sign of course includes the –sign. So rho so u is Ax*A that is this term, the other terms are

not there because u does not have any dependence on y and z.



So the other terms are not there, so this is the equation of motion along x. What will be the

equation of motion along y? Just it will be similar to this. There is no body force along y and

rho, right hand side what is going to happen, this u is only going to be replaced with v. So the

term that will remain relevant is only v*partial derivative of v with respect to y okay. So it is

–Ay*-A.

Let us consider the z component. Now you have a body force along z. So what is that? So

Bz=-g so –rho g=the right hand side u will be replaced by w and there is no w component of

velocity,  it  is  a  2-dimesional  flow  field  so  it  is  0.  So  it  is  possible  to  integrate  these

expressions to find out how p varies with x, y and z. So let us integrate that let us say we

integrate this one with respect to x.

(Refer Slide Time: 13:25)

So we get p here as what –rho A square x dx will become x square/2+function of y and z

right. For this it will become p=very similar –rho A square now y square/2+a function of x

and z and what will this give? p=-rho g z+a function of x and y. All these 3 expressions are

representing the same pressure field. So we can compare these to get these 3 functions. So let

us compare this and get the 3 functions.
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If you compare what functions you get, what is f1? F1 is a function of y and z. So –rho A

square y square/2 then –rho gz, this is f1. F2 function of x and z, so –rho A square x square/2-

rho gz and f3 –rho A square x square/2-rho A square y square/2 okay. So the expression for

pressure becomes –rho A square x square/2 rho A square y square/2-rho gz right. So this you

can write -1/2 rho A square x square+A square y square is u square+v square.

So that is the square of the resultant velocity. So let us say capital V square-rho gz that means

p+1/2 rho v square+rho gz=0. Now when we write this, there is a lack of generality here.

What is the lack of generality? When we considered this f1, f2, f3 we did not consider a

constant. So fundamentally we should also have a constant there where that constant maybe

eliminated depending on a choice of a reference frame but that is not done priori.

That is after you get the general expression then only that is possible. So a very important

thing here is that each of these should be augmented with a constant. So what it means is that

this+c will be there. So this will become in place of 0 it will become some constant. This

looks  very  familiar  to  you;  it  is  like  a  Bernoulli’s  equation.  Now  do  not  get  a  wrong

impression here that the Bernoulli’s equation is always valid and that is why you can write it

in this form.

There is a specialty  of this problem because of which the Bernoulli’s equation gets valid

between any 2 points 1 and 2. So this is point 1 and this is point 2, solving the problem is

trivial you can find out p1-p2 while substituting the velocities respectively at x1, y1 and x2,



y2 that is a straightforward exercise.  “Professor - student conversation starts.” Yes, the

direct comparison of the equation is possible because they represent the same pressure.

This is by observation, see I mean when you write, when you say that these two are equal or

these three are equal, it should be such that it does not contain any function of x, y, or z which

falls beyond the functions written here right. I mean there are certain things which you can do

just by common sense and this is one of the big things in mathematics which you can do by a

little common sense and that is what is expected when you solve such problems. “Professor -

student conversation ends.” 

Now when you come to this conclusion that it is like a Bernoulli’s equation in fact it is of the

same form and we therefore can apply it between any 2 points 1 and 2. It is not a general

conclusion that we must remember and we will do it vigorously to show that when it is valid

and when it  is  not  valid.  This  is  very, very  important  because  all  of  you are very, very

habituated in using Bernoulli’s equation anywhere and everywhere you like.

So we will try to see we will try to restrict you so that you do not apply it anywhere and

everywhere and we will see that when it is applicable and when it is not, but before that this

problem at least tells us that this is a very easy problem and it demonstrates that in this case it

is possible to apply it between 2 points 1 and 2. So what is the specialty of this problem? Let

us look into it.

See for every problem there is one aspect that is how to solve a problem that is fine but there

is a greater aspect how to develop a more detailed insight on what the problem is about. So

we are now trying to do that, problem is solved, but it is not enough. Let us see that what

insight it gives us. Try to find out what is the rate of deformation and angular velocity of this

flow.
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So if you recall that if you want to find out the say rate of deformation epsilon dot xy, what is

that? So in this case what is the value of this? Identical=0, angular velocity in xy plane, 1/2 of

this one because each of this terms are 0, you have this also identically=0. So what does it

show? It shows that if there is a fluid element located in this flow field, it does not have any

shear deformation, it does not have any rotation.

That means it its edges were originally parallel to x and y, those will remain always parallel

to x and y. If it is incompressible what will happen? It might stretch along say x, so it should

reduce its length along y, so that the volume is preserved.
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So it is like if the fluid element was originally like this, maybe it will become once like that

and it will change its configuration in such a way that angularly there is no change. Only



there  are  changes  in  linear  dimension  but  ensuring  incompressibility  because  it  also

represents an incompressible flow field. That you can check by checking the divergence of

the velocity vector is 0, so it is an incompressible flow.

So that is one important observation. So the important observation is it does not have any

shear effect. Next is it does not have any angular velocity, so it is like an irrotational flow

because irrotational flow has no angular velocity or no vorticity so to say. Now let us try to

see that what will be the equations of the stream line in this case. So we are interested to find

out the equations of the stream line.

It will give us even a deeper insight and we will relate it to one of the movies that we saw in

our previous lecture.

(Refer Slide Time: 22:46)

So if you write the equation of the stream line it is dx/u=dy/v right. This is the equation of the

stream line. So you have dx/Ax=dy/-Ay A is !=0. You can cancel that and if you integrate it

you will get ln x =-ln y+a constant let us say ln k. So this gives an equation of the stream line

of the form xy=k, which is like a rectangular hyperbola.
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That means if you have say if you consider this as x axis and may be this as y axis, it is

possible that you have your stream lines in this way. So if you have a fluid element originally

like this maybe the fluid element is coming down along the stream line. I am just trying to

make you recall one of the movies that we showed to you that the fluid element is coming

down like this with no angular change, no rotation, no shear deformation but only the lengths

of the respective edges are getting altered.

So it is a case of pure linear deformation, no angular deformation okay and then in such a

case we have 2 things satisfied, one is there is no effective viscous effect because the viscous

effect comes through what? Viscosity* the rate of shear deformation. So if the rate of shear

deformation is 0, it does not matter whether viscosity is 0 or not. So inviscid effect is not

always through viscosity=0.

It maybe the rate of shear deformation=0 because eventually we are interested about whether

the shear stress is 0 or not. So if the shear stress is 0, it does not matter whether it is 0 because

of mu=0 or because of rate of shear deformation=0. Here it is 0 because the rate of shear

deformation is 0. So it does not have any effect of viscous shear, it does not have any effect of

rotationality.

So for it is effectively like an inviscid and irrotational flow and for such a flow, we will show

later on that you can apply Bernoulli’s equation between any 2 points in the flow field. This

regarding where they are and we will now go into the more vigorous way of establishing this



very important consideration. So to do that what we will do we will leave this example and

go back to the Euler’s equations of motion along the different directions.

So we have written the Euler’s equation of motion along x,  which is  there in the board.

Similar equations are there along y and z. Now what we are interested to? We are interested

to write or to find what is the difference in pressure between 2 points.
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So let us say that we have 2 points, 1 and 2 which are quite close so that they are connected

by a position vector dl, dl is given by dx i+dy j+dz k okay. So this is the position vector that

we are  looking for. What  is  our  interest?  To find  out  what  is  the  difference  in  pressure

between points 1 to 2. So whatever we did in the previous problem a bit more informally we

will now generalize it for very general case that is what happens in that case.

To do that we will note that if you want to find out the difference in pressure between the 2

points, here pressure is a function of what x, y and z. So you can write this as the sum of

these 3 partial derivative terms. Each of these terms we can substitute from each component

of the equation of motion. So the first term you can substitute from the x component of the

equation of motion, which is written below. So let us write that, so this will be – of.

So this you are writing now the + of this one, so that means this term will become – the right

hand side.  So that  will  become – of rho.  Then + a  body force,  so +rho bx dx, with dx

multiplication we will come separately. We are just isolating the dp dx term, so we are not



writing the dx together with this. So if you also consider the dx term together with this then it

will be the entire thing multiplied by dx.

Now we will try to write it in a compact form because like it is possible to utilize some of the

very well-known identities of vector calculus to simplify it. So what we will do is we will

write this particular term in a vector calculus notation. So we can write this as v dot with

gradient of u right. So then you will get these terms. Keeping that in mind that other terms

will also give similar expressions like what we will change for the second term in place of

this u it will be v, in place of this u it will be v, in place of bx it will be by like that.

So it is very, very analogous and we can write the general expression for dp as –rho now we

will collect all the terms, we will keep all the terms of similar type together. This is one term,

then  next  we  will  write  that  acceleration  term,  that  is  the  convective  component  of  the

acceleration term is the temporal component. Then –rho and the body force term okay. So

these 3 types of terms are there.

Just for the writing convenience, we will call it term 1 and there is a logic behind that these

terms are containing expressions of similar nature. So we can simplify them in groups. Let us

write or let us try to simplify terms 1, 2 and 3 separately. So we will do that keeping in mind

that the term 1 is the transient term and when we are simplifying we will be keeping in mind

that we will be utilizing the vector dl which connects the 2 points, which are closed to each

other.
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So the term 1 is –rho. Now can you write it in terms of the 2 vectors v and dl. Remember v

has components u, v, w; dl has components dx, dy, dz. So if you write for example like this

dot with dl then that expression and this is the dot product of this with this of course you have

a partial derivative of that one. So it is just writing the same expression in a vector form. Let

us write the term 2.

How do you write the term 2? –rho again let us try to write using the vectors v dot. Let us

check whether this is alright or not. See and then we have to keep in mind that this is a scalar

term right. So first of all whatever is a vector operator it should give back a scalar so you

have one dot product and a dot product and the product of that is expected to give back a

scalar.

You can just check, let us check that, so you can write this as v dot del then u dx+v dy+w dz.

So it becomes of a same form as that given by the term 2. Now it is possible to simplify the v

dot del v using a vector identity what is that? So v dot del v=one important thing we will see

that whether the bracket is to be put here or after the v and still this is not complete. So let us

tentatively write it.

This is a very well-known vector identity. Now you see that what is this? v dot v is a scalar.

The gradient operator operating on it makes it a vector and this is very clear, this is a vector.

So this should be a vector. So when you have v dot del, this is a scalar but this being a vector

it keeps it a vector. So whenever you write an identity, these are certain common sense things

that you should check.

Because depending on what you operate the same thing may look may become a scalar and

vector very easily depending on how you put your cross products and the dot products. Now

why we are putting in this particular form is because here you get the vorticity vector and we

were finding out that the condition of rotationality or irrotationality has some influence on the

pressure difference between the points.

And this vector solely is responsible for whether it is rotational or irrotational okay. So we

will  put that  simplification here.  We will  put this  as –rho 1/2 in place of the curl  of the

velocity vector will write the vorticity then dot dl. For the term 3, what we will assume? It is

again a very general term, but we will assume that the gravity is the only body force which



acts along the negative z direction as we considered in the problem that we discussed just

before this.

So what we will assume that bx is 0, by is 0 and bz is –g because that is the common thing

that we encountered in many problems but if there are other components of body force you

know that how to simplify like you can just put the corresponding components here. So then

that  will  become  term 3  will  just  become  –rho  g  dz.  Since  it  has  just  only  one  scalar

component, it is not useful to write it in a general vector form.

It will not give us back many things, so dp is sum of term 1, term 2 and term 3. We can

simplify the term 2 and term 3 further let us try to simplify the term 2 one more step. So –rho

let us now consider the dot product of this with dl so 1/2 what is v dot v? v dot v is v square

where this capital V is the resultant velocity. So that we are writing this dot with this one

sorry that is the first term.

And you also have a term +rho v cross vorticity vector dot dl. You can recognize that it is like

a  scalar  triple  product  of  3  vectors  like  A dot  B  cross  C  okay.  So  we  will  keep  that

simplification for a moment and just consider the first term. What does the first term look

like? 1/2 that is the first term of the term 2 and then rho. You can clearly see that the first term

of the term 2 will become what? It is like it will become d dx of v square.

It is a sum of the 3 partial derivatives will give the total one. So this will become at the end a

simplified form-1/2 rho d of v square. So this is like not d dx just the total d, so this is partial

derivative with respect to x*dx, this is partial derivative of y*dy and that with respect to z*dz.

So that is given the total d+the whatever term that is remaining. Now let us put back all the

terms together in the equation.
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So what is our equation? Our equation is term 1+term 2+term 3=dp that means –rho that is

the term 1. So let us sorry dp not 0, it was dp. Then term 2, in place of term 2 we will write

-1/2 rho dv square+rho may be let us write dl dot v cross zeta that is the term 2 and term 3 is

–rho g dz=dp. This is the compact form and it is possible to simplify it even for the based on

certain special cases. So what special cases we will be interested in let us see.

So what special cases maybe let us take all the terms in the same side. So you have dp+1/2

rho dv square+rho g dz, up to this you can find some similarity with the Bernoulli’s type of

equation that you have encountered earlier but you are getting also some 2 extra terms. Let us

write those extra terms. So + then –rho this = 0 because these 2 terms are like beyond what

you have encountered many times, we will try to put more attention to the last 2 terms.

We will put the first important attention on the last term because this particular term in a case

when it is a steady flow, this trivially goes away. So there is no big controversy or there is no

big  uncertainty  in  that  that  is  quite  understandable  but  the  last  term  there  are  many

possibilities when the last term can become 0. What are the cases?

So if you just write it in a determinant form, when you are having such a scalar triple product,

you can write it in terms of determinants where each row of the determinant will represent the

components of the vectors taken in the particular order. So you have like dx, for dl you have

dx, dy, dz; for v you have u, v, w; for the vorticity you have okay. Now let us consider a case

when this say rho 1 just look it into mathematically say rho 1 is a scalar multiple of the rho 2.



When it is possible? When the direction of dl and the direction of v are the same. Then one

will  just  be the scalar  multiple  of the other  because direction  wise they are representing

vectors oriented identically. So when that is possible? What is the special dl for which that is

true if it is located along a stream line? So if you consider this as like term A, so we will

identify certain cases when A becomes 0.

So A=0 when certain cases one is dl is along stream line. Let us call the stream line direction

as ds, s for stream wise coordinate. When that is the case, we do not care whether it is an

irrotational flow or not, it does not matter whether it has nonzero components of the vorticity

vector.  “Professor - student conversation starts.”  Yes. There is nothing called as stream

line flow, first you have to understand.

There is a stream line in a flow, there is nothing called stream line flow okay. Next, this is

what,  this  is  the line element  that  you are considering.  These are  the components  of the

velocity vector. What is the definition of a stream line? Such that tangent to the stream line at

any point represent the direction of the velocity vector. So tangent is this direction dl, small

elemental direction and this is the velocity vector direction.

So if they are located in a same direction that means they are parallel vectors. That is the

definition of the stream line, it is nothing extra. “Professor - student conversation ends.” If

dl is located along a stream line, then we do not care whether it is a rotational or irrotational

flow but if it is not then if the vorticity vector is identical = 0 then A will become 0, no matter

whatever is like no matter dl is located along the stream line or not.

So vorticity vector is a null vector, this is irrotational flow. So you can clearly see that if it is a

steady and irrotational flow, these 2 terms go away and then sum of these 3 is 0 that means if

you integrate  that  the integration  will  give a constant  of integration  and that  is  what  we

actually  saw  in  the  example  the  problem  that  we  discussed  before  going  through  this

derivation.

There is a third case, there could be many such cases but a third case say you have the v cross

this vorticity vector is perpendicular to dl. These 2 cases are more common cases that we

have  encountered.  This  is  not  a  very  common  case  you  have  encountered  but  this

mathematically you cannot rule out.



You have a vorticity vector, you have a velocity vector, you can find the cross product and

take an element in a direction which is oriented along that cross product and then if you take

such an element then for such an element also for steady flow it will appear that the Bernoulli

type of equation is valid. So this is not a Bernoulli type of equation. This is in fact one step

before that where we do not make any explicit assumption on how that rho or the density

varies.

So this is still the Euler equation of motion. So this is more general way of writing the Euler

equation of motion where you are considering all the individual components and trying to

write that in a vector form but at least we can understand that this term become 0 under what

cases.
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So let us say that we are considering one such case let us say that we take an example we are

considering along a stream line. That is what do you mean by along a stream line that means

we are interested to find out these changes. See this  relates what? This relates change in

pressure, change in velocity, change in elevation with respect to a change in position vector

from point 1 to point 2.

So when we are considering along a stream line that means we are interested to evaluate that

change by moving along a stream line. So never consider something like a stream line flow.

Again I am repeating there is nothing called as stream line flow. In flow, there are stream



lines but it is not a stream line flow. So when you have a stream line we are looking for the

difference in like these variables along a stream line.

So when you have along a stream line and let us say steady flow as the first example. This is

example 1. So then what you will have, then A term will become 0, this term because of

steadiness will become 0. So you have dp+1/2 rho dv square+rho g dz=0. This is known as

Euler equation of motion along a stream line. Now this is valid both for compressible as well

as incompressible flows. You are not yet committed of how the density changes.

So now we are interested to see that how the density changes. To do that we will let us say we

will write it in this form dp/rho+1/2 dv square+rho g dz and try to integrate it. So we will try

to integrate it, the rho will not be there because rho we have already divided by rho. So when

we try to integrate it what are the points over which we are integrating? We are integrating

with respect to 2 points 1 and 2 which are located on the same stream line. 

Because we have considered along a stream line that is we are considering this particular case

which has made the term A=0. So when we do that this = 0 that is still valid for any type of

flow compressible  or  incompressible.  Now we would  make an  assumption  that  rho  is  a

constant, assume, that is the special case of an incompressible flow. So then what you can

write, you can take the rho out of the derivatives.

So you can write p2-p1/rho+1/2 v2 square-v1 square+g*z2-z1=0 okay. This is nothing but the

Bernoulli’s equation. That is p1/rho+v1 square/2+gz1=p2/rho+v2 square/2+gz2. So it is in

fact the Bernoulli’s equation. Now you tell that what are the assumptions that we followed in

deriving this? So this is the Bernoulli’s equation. We will come into the physical significance

of this Bernoulli’s equation in a next lecture.

But let us at least try to identify that what are the assumptions that we utilize to derive these.

So what are the assumptions?
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So first start with the most basic assumption, when we wrote the equation of motion what we

assumed? Okay, only gravity is the only body force, it is okay but it is like it is very, very

explicit  what is not so explicit  is inviscid flow. So inviscid flow is very important.  Then

steady flow, density is constant, it is a special case of incompressible flow, not irrotational

flow. We have not taken this condition 3.

When we take irrotational flow, we get a more freedom then we need not be restricted along a

stream line, but when we are considering along a stream line then it need not be irrotational.

If it is irrotational fine, if it is not irrotational still okay. So along a stream line that is what we

considered  in  this  example.  So  these  are  the  4  assumptions  that  we  have  considered  in

deriving this.

Now these are the assumptions that we commonly use because commonly we utilize the

Bernoulli’s equation along a stream line. At the same time, we must understand that these are

not always the cases, inviscid flow is the most important thing. Now can you tell that if you

are thinking about Euler’s equation along a stream line out of these which assumption is not

necessary? Say the Euler’s equation of motion along a stream line.

Density=constant is not necessary, so density=constant is the additional assumption beyond

the Euler’s equation. So after you make that assumption, you have to also keep in mind that I

would say the most important assumption is inviscid flow because many times we tend to

apply the Bernoulli  equation in case when viscous effects  are very much present,  maybe



many times you have solved such problems in your earlier high school exercise problems to

solve like to get the velocity pressure and so on.

We will see that that is not fundamentally correct, in some cases you can get rid of that and

still get some qualitative picture. We will see that when and when not but fundamentally it

has to be inviscid flow. Steady flow is for this version of the Bernoulli’s equation but you can

also have an unsteady version of the Bernoulli’s equation that we will see later on maybe in

the next class that where we retain this term.

And we can write Bernoulli’s equation by considering even the unsteady flow along a stream

line. So only for this version, it is steady flow and that is the standard Bernoulli’s equation

but we also have unsteady Bernoulli’s equation. So for unsteady Bernoulli’s equation, the

steady flow assumption is not required. Rho=constant is always required because you are

taking rho=constant and taking out of the integral.

And along a stream line is required for this special case when you are not bothered about

whether it is irrotational or not. If it is irrotational, then this need not be the case. So may be

relaxed for irrotational flow. So what is the summary? The summary is if it is an irrotational

flow and other conditions are satisfied that it is inviscid, steady and rho=constant, you can

write p/rho+v square/2+gz is constant need not always be along a stream line.

So this is constant no matter whether you are considering the points 1 and 2 anywhere in the

flow field that is very important. So points 1 and 2 may be located anywhere in the flow field

still this equation is satisfied if it is an irrotational flow. If it is not an irrotational flow, then 1

and 2 have to  be  located  along the  same stream line.  So these  are  very, very important

fundamental assumptions that go behind the Bernoulli’s equation. We will stop here today.

We will continue again in the next class. Thank you.


