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We were discussing about different flow visualization lines in our last class and we will discuss

one more flow visualization line, which is called as time line. So, what is the time line? If you

have a snapshot at a particular time in the flow field where you mark nearby particles, so nearby

fluid particles, which are located in the flow field at a given instant of time, if you somehow

mark those particles by some way.

Then if you now get the snapshot at different times, it will give a picture of evolution of the

flow field as a function of time and that is known as a time line,  so it  is  nothing but like

snapshot of nearby fluid particles at a given instant of time that is called a time line. So, let us

look into a small movie to see that what we mean by a time line.

(Refer Slide Time: 01:29)

So, if you see now this gives snapshot at different instants of time of nearby fluid particles and

in a way, it gives a sense of the velocity profiles at different instants of time you can see that in

this example, the flow passage is narrowing and as the flow passage is narrowing, the fluid is

moving faster to make sure that the mass flow rate is conserved. We will  see later on that

formally this is described by the continuity equation and in maybe a differential form or an

integral form.



But  at  least,  this  gives  us  a  visual  idea  of  what  the  time  line  is  all  about,  now with  this

background on the flow visualization lines, we have now understood that how we can visualize

the fluid flow in terms of some imaginary description like through the streamline, streak line

path line or maybe the time line. Next, we will go into the description of acceleration of fluid

flow.

(Refer Slide Time: 02:40)

So, we have discussed about the velocity, the next target is the acceleration. Let us say that you

have a fluid particle located at a position P at specifically the location P1 at time = t and how

the velocity is described here; the velocity is described here through a velocity vector v, which

is a function of r1 that is the position vector of the point P1 and the time t, this is nothing but

the Eulerian description.

If  you  write  it  in  terms  of  components,  you  can  write  an  equivalent  scalar  component

description that you have u as a function of x, y, z and t, v as a function of x, y, z, t and w, as

another function of x, y, z, t. So, we are trying to describe it in terms of Cartesian coordinates, it

is not always necessary to do that but it may be a simple way to demonstrate, one may use other

coordinate systems as well.

So,  if  you  are  using  a  Cartesian  coordinate  system,  3  independent  coordinates;  space

coordinates plus time coordinate that together give the velocity at a particular point, so if the

fluid particle  is  located  at  P1,  the velocity  at  that  point  is  basically  the velocity  of a fluid



particle located at that point and that is given by these components. Now, let us say that at a

time of t + delta t, these things get changed.

Now, at a time t + delta t, what happens; this fluid particle is no more located at this point, the

fluid particle is located at a different point, so let us say that the fluid particle is located at a

point P2. So, at the point P2, now let us say that the velocity is whatever at some arbitrary

velocity, so initially it may be velocity at the point 1, say v1, now it is v2, which is again a

function of its local position and time.

So, you have this v2, this one a function of what; so, let us say that it is given by its components

u + delta u, v + delta v, w + delta w, these are functions of what? These are functions of the new

position vector, the new position vector say is r1 + delta r1, so in terms of scalar components, it

may be x + delta x, y + delta y, z + delta z and the time has also now changed, it has become t +

delta t.

So, we are thinking about a small interval of time delta T, over which the fluid particle has

undergone some displacement, which is a change in position vector having components delta x,

delta y and delta z that is what we are trying to understand. So, we can clearly see that there is

an original velocity in terms of its 3 components, there is a change velocity in terms of which 3

components.

And if we want to find out the acceleration; see the basic definition of acceleration is based on a

Lagrangian reference frame that is the rate of; time rate of change of velocity in a Lagrangian

frame not in a Eulerian frame, all the basic definitions in Newtonian mechanics that we have

learnt earlier are based on Lagrangian mechanics. So, when you say that it is a rate of; time rate

of change of velocity.

Then that has to deal with the time rate of change of velocity of maybe an identified fluid

particle, which earlier was at P1, now is at P2. So, if we want to find out the change, so you can

write of course, you can write it in terms of the 3 different components but just for simplicity,

let us write for the x component, similar things will be there for y and z component. So, how

can you write u + delta u as a function of u.
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So, u + delta u is now dependent on the local position of the particle and the time that has

elapsed, so it is a function of; it depends on what; it depends on the original u plus the change.

So, what was the original u? That was u +; see, it is a function of 4 variables, so you again it is a

same mathematical  problem that  there  is  a  function  of  4  variables,  it  is  known at  a  given

condition, now you make a small change in each of these variables and you want to find out the

new function.

Again, you can express it through a Taylor series expansion, now it is a function of multiple

variables instead of a single variable. So, we will use the Taylor series expansion, you have to

keep in mind that now you are having 4 variables. So, let us first consider the time variable may

be because it is bit different in characteristic than the earlier one, so this is with regard to the

time, then with regard to that space okay, plus higher order terms.

This we have just written the first order term in the Taylor series, since it is a function of 4

variables, you have 4 first order derivative terms, similarly you will be getting second order

derivative terms and so on but we will neglect the higher order terms by considering that these

delta x, delta y, delta z, delta t are very small, so we have to keep in mind that all these are

tending to 0.

(Refer Slide Time: 09:35)



And because all they are tending to 0, we are neglecting their higher orders, so you can first

think  what  you  can  do,  you  can  cancel  u  from both  sides  and  what  is  the  definition  of

acceleration along x from a particle mechanics viewpoint or a Lagrangian viewpoint?

(Refer Slide Time: 09:55)

So, you have to find out the change in velocity; x component of velocity because we are writing

acceleration along x divided by the time delta t in the limit as delta t tends to 0, very simple

straightforward Lagrangian description. So, when you do that basically what we are doing; we

are dividing the left hand side by delta t, so right hand side is also divided by delta t and a limit

is taken as delta t tends to 0.

So, the first term is straightforward, let us look into the next terms, so first we will evaluate the

limit; limit as delta t tends to 0, delta x divided by delta t that multiplied by the derivative with



respect to x, similarly the other terms, let us just complete it. So, what we are doing is; we are

trying to find out that because of the changes in velocity component along different directions,

what is the net effect in acceleration?

And  these  terms  are  basically  representatives  of  that  we  will  formally  see  that  how  they

represent  such a situation.  So, now let  us concentrate  on these limiting  terms say, the first

limiting term. What it is representing? It is representing the time rate of change of displacement

along x of the fluid particle over the period delta t. Now, you have to keep in mind that we are

thinking about a limit as delta t tends to 0, this is a very important thing.

What is the significance of this limit as delta t tends to 0, when delta t tends to 0, P1 and P2 are

almost coincident, right that means, let us say that P1, P2 all those converts to some point P and

that point is a point at which say we are focusing our attention to find out what is the change of

velocity that is taking place, so when in the limit delta t tends to 0? we are considering the

Eulerian and Lagrangian descriptions merge.

This is very very important, so we are trying to see what is our motivation; we know something

and we are trying to express something in terms of what we know; what we know, we know the

straightforward Lagrangian description of acceleration, we are trying to extrapolate that with

respect to an Eulerian frame. To do that we must have a Eulerian, Lagrangian transformation

and essentially, we are trying to achieve that transformation in a very simple way that as the

delta t tends to 0, Eulerian and Lagrangian description should coincide.

And then what does it represent; it represents the instantaneous velocity; x component of the

instantaneous  velocity  of  the  fluid  particle  located  at  P  that  means,  it  represents  the  x

component of the fluid particle located at P, since you are focusing our attention on P itself and

the velocity of the fluid particle, if it is neutrally buoyant is same as the velocity of flow, we can

write that this is same as what; this is same as u at the point P.

See, writing this as u is very straightforward understanding it conceptually is not that trivial and

straightforward, if the Eulerian and Lagrangian descriptions did not merge, we could not have

been able to write  this because this is  on the basis  of a Lagrangian description and this  is

Eulerian  velocity  field.  How these  2  can  be  same?  They  can  be  same only  when  we are

considering a particular case, when in the limit as delta t tends to 0.



So, wherever we are focusing our attention at that particular point, this replaces the velocity of

the fluid particle, if the fluid particle is neutrally buoyant with the flow, then it is like an inert

tracer particle moving with the flow and then it would have the same velocity as that of the flow

at that point; at that point, at that instant. However, if the fluid particle has a different density

than that of the flow, then this would be u of the fluid particle.

So, fundamentally this is u of the fluid particle not u of the flow field, if it is neutrally buoyant

then it becomes same as u of the flow field. If it is an inert tracer particle in the flow, which is

the definition of the fluid particle then it is definitely same as u at that point but if it is a fluid; if

it is a particle of a different characteristic, different density characteristic than that of the flow, it

may be different from that of the velocity field at that point, so that we have to keep in mind.

(Refer Slide Time: 15:30)

So, if you complete this description of this term what we will get; you will get ax is =; that is

the straightforward follow up of this expression because the other limits, you can express in

terms of v and w, again with the same understanding as we expressed as we use for expressing

the first term. Now, if you clearly look into this acceleration expression, there are 2 different

types of terms; one is this type of term which gives the time derivative, another gives the spatial

derivative.

You will see that this expression will give you a first demarcating look of how the expression is

different in terms of what we express in a Lagrangian mechanics. In a Lagrangian mechanics, it

is just the time derivative that comes into the picture, here you also have a positional derivative



and what do these terms represent; we will give a formal name to these terms but before that

first let us understand that what these 2 terms represent.

(Refer Slide Time: 16:48)

Say, you are located at a point 1, now you go to a point 2 in the flow field, so when you go

there, there are 2 ways by which your velocity gets changed, how? One is maybe from 1 to 2

when you go, you have a change in time and because of a change and you also have a change in

position, you have a change in velocity and that is a solely time dependent phenomenon. How

can you understand what is the component of the time dependent phenomenon?

If you did not move to 2 but say you confine yourself to 1, say you are not moving with the

flow field, you are confining yourself with 1, then you are freezing your position but still at the

point 1, there may be a change in velocity because of change in time, if it is an unsteady flow

field.  So,  because  of  that  it  might  be  having  an  acceleration,  so  the  acceleration;  that

acceleration component is because of what; the time rate of change of velocity at a given point

at a given location, so that is reflected by this one.

But by the time, when you are making the analysis the fluid particle might have gone to a

different point even if it is local velocity that is velocity at a point is not changing with time, it

has  gone to  a  different  point,  there it  encounters  a  different  velocity  field.  So,  here it  was

encountering a particular velocity field because of its change in position, so what it has done; it

has got advected with the flow.



It  has moved with the flow and it  has come to a new location,  where it  is  encountering a

different u, v, w, so because of the change in u, v, w with a change in position, it might be

having an acceleration, so that acceleration is not directly because of the time rate of change of

velocity at a given point but because of the spatial change, since the particle; the fluid particle

by the time has travels to a different location, where it finds a different flow field.

And since, we are considering that it is an inner tracer particle, it has to have the same velocity

locally  as that  is  there in  a new position,  so because;  so the next combination  of terms,  it

represents the change in velocity solely due to change in position, so the total the net change is

because of 2 things; one is if you keep position fixed and you just change time because of

unsteadiness in the flow field, there may be an acceleration.

The other part is even if the flow field is steady but you go to a different point because of non-

uniformity because of a change in velocity; due to change in position, the fluid particle might

have a change in velocity, so the change in velocity in the fluid particle may be because of 2

reasons; one is because of the change in velocity due to change in time, even if it were located

at the same position as that of the original on.

And the other one is not because of change in time but because of change in position as it has

gone to a different position because of non-uniformity in the flow field, it could encounter a

different velocity and the resultant acceleration is the combination of these 2. So, let us; let us

take a very simple example to understand it. Say, you are traveling by flight from Calcutta to

Bombay.

So, when you are taking the flight; before taking the flight, you see that it is raining very, very

heavily and then say you take 2, 2 and 1/2 hours you reach Bombay and you find that it is a

very sunny weather. So, the question is now if you want to ask yourself a question, does it mean

that when you departed from Calcutta it was raining in Bombay or when you departed from

Calcutta,  it  was sunny at  Bombay or when you have reached Bombay, is  it  still  raining at

Calcutta or is it still sunny at Calcutta.

It is not possible to give an answer to any one of these because the net effect that you have seen

is a combination of 2 things, you have traversed with respect to time, so you have elapsed

certain  time by which  maybe it  was  raining  at  Calcutta  but  right  now, it  is  not  raining  at



Calcutta, maybe it was sunny at Calcutta and right now it has started raining, so it is like at a

particular location, the weather has changed because of change in time.

But the other effect is that you have migrated to a different location and because of the change

in location maybe it  was before 2 years raining at Bombay, now it is sunny or it might so

happen  that  it  was  sunny  2  hours  back  in  Bombay, still  it  is  sunny, so  you  can  see  that

individual effects, you can maybe try to isolate but what is the net combination of changing

with respect to position in time that is the net effect of this.

And  it  might  not  be  possible  to  isolate  these  effects,  so  when  you  think  about  the  total

acceleration, so it is just like a total change. So, when you have the total change, it is a change

because of position and because of time and that is why, this ax or maybe ay or az, this is called

as the total derivative of velocity. So, it is given a special symbol capital D Dt.

(Refer Slide Time: 22:18)

So, capital D Dt has a special meaning, it is called as total derivative it is to emphasize that it is

a resultant change because of change in position and change in time, so with respect to change

in  time,  if  you  have  a  change  then  it  is  called  as  a  temporal  component  of  acceleration.

Temporal stands for time; temporal or transient or local, so these are certain names, which are

given.

Again by the name, local it is clear, local means, confined to a particular position only with

respect  to  change  in  time  and this  is  known as  the  convective  component.  So,  convective

component is because of the change in position from one point to the other and this therefore is



the total or sometimes known as substantial. So, the total derivative is a very important concept

mathematically here, we are trying to understand this concept physically.

(Refer Slide Time: 23:54)

But it is not just restricted to the concept of acceleration of fluid flow, it is applicable in any

context. In any context, where you are having an Eulerian type of description and it is therefore

possible  to  write  the general  form of  the total  derivative  as this  way, where it  has a  local

component and a convective component. So, we can try to answer some interesting and simple

questions and see and get a feel of the difference of these with again the Lagrangian mechanics.

So, if we ask a question, is it possible that there is an acceleration of flow in an in a steady flow

field that the flow field is steady but there is an acceleration, it is very much possible because if

it is steady only the first term will be 0 but if the velocity components change with position,

then the remaining terms may not be 0. So, this is of like, these are certain contradictions that

you will first face, when you compare it with Lagrangian mechanics.

In Lagrangian  mechanics,  if  there  is  something which does  not  change with time,  its  time

derivative is obviously 0 but here even if it does not change with time, the total derivative is; it

may not be 0. On the other hand, it may be possible that it is changing with time at a given

location but acceleration is 0 because I mean in a very hypothetical case, it may so happen that

the local component of acceleration say it is 10 meter per second square, convective component

is - 10 meter per second square so the sum of that 2 is 0.



But individually, each are not 0 that means, it is possible to have a time dependent velocity field

but zero acceleration and it is possible to have a non-zero acceleration even if you have a time

independent  velocity  field,  so  these  are  certain  contrasting  observations  from  the

straightforward Lagrangian description. So, you can write the x component of acceleration in

this way and I believe it will be possible for you to write the y and z components, which are

very straightforward.

And you have to keep in mind that when you write y component this D Dt operator will act on

v and when you write  the z  component,  it  will  act  on w, so you can  write  the  individual

components of acceleration vector and the vector sum will give the resultant acceleration. Now,

you can write these terms in a somewhat compact form, so this you can also write as v dot del,

where del is the operator given by; okay.

And v is the velocity vector you know that is ui + vj + wk, so if you clearly make a dot product

of these 2, you will see that this expression will fall. So, it is a compact vector calculus notation

of writing the convective component of the derivative okay. So, we have got a picture of what is

the acceleration of flow, how we describe acceleration of flow in terms of expressions through

simple Cartesian notations and maybe also through vector notations.

(Refer Slide Time: 28:12)

Next, what we will do; we will start analysing the deformation of fluid elements. Why this is

very  important?  Because  we  have  seen  that  fluids  are  characterized  by  deformation,  they

undergo continuous deformation on the under the action of even a very small shear force and



the relationship between the shear force and or the shear stress and the rate of deformation is

something, which is unique to the constitutive behaviour of different fluids.

So, we must first understand that how to characterize deformation of fluid elements in terms of

the velocity components. Once, we understand that it will be possible for us to mathematically

express different types of deformations in terms of the velocity components the uv and w. When

we do that we have to keep in mind that we will be essentially bothering about 2 types of

deformations; one is the linear another is the angular deformation.

When we talk about the linear deformation, it may eventually give rise to a changing volume of

the  fluid  element  also  because  if  you  have  a  length  element  and  the  length  element  gets

changed, a volume element is comprising of several such length elements, so if length linear

dimension gets change, the volume is also likely to get changed. Initially, we will think of how

we can say, estimate the linear deformation.

So, we will start with the linear deformation,  to understand or to get a visual feel, we will

consider a fluid element like this, maybe we may consider even a 3 dimensional fluid element,

if you want but that will not make the thing more complicated because at the end, we will be

dealing with linear deformations in individual directions. See, why we use a coordinate system

for analysing a problem?

The reason is like say, when you think of x, y, z the Cartesian coordinate systems, these are

independent coordinates, a combination of which describe the total effect in the system. So,

when you are thinking of a linear deformation along x, you may be decoupled from what is the

linear deformation along y and z and these individual effects, you can superimpose because you

are dealing with linearly independent components.

And  these  vector  components  actually  give  you  linearly  independent  basis  vectors  like

components along x, y or z. So, similar concept whenever, we are considering a change along x,

maybe we are bothered only with respect to; like what is the change in the linear dimension

along x, disregarding what happens along y and z. So, let us keep that target, let us say that

delta x is the length of the fluid element, which is originally there.



And now, what is happening; now, we are having a change in time and because of a change in

time now, you see that let us, consider the front phase of this cuboid, so this left phase over a

time interval of delta t will traverse a displacement; will undergo a displacement. What is the

displacement? If u is the velocity at this location simply, u * delta t, we are considering the time

interval delta t to be very small, so it is like just a product of the velocity into delta t.

The right phase will also undergo some displacement, what is that? So, if this is the x direction,

the new u here is not the same as the u at the left phase but this is because of change in u due to

change in x, so this is the new u times delta t. So, if you consider only the front phase and only

subjected to this motion, say we freeze all other events just for a clear picture, so maybe now, it

is having a new configuration shown by this dotted line.

So, what is the change in its length along x; that is the final length minus the original length, so

what is the final length, so what is the net change? See, the right hand phase has got displaced

by this amount, the left hand phase has got displaced by this amount, so the net displacement is

the difference between these 2, so what is that change in length? 

(Refer Slide Time: 33:40)

So, change in length along x, this is the change in length along x. What is therefore the strain

along x? The change in length per unit length, so the strain along x; this is the elemental strain

because we have considered only a small part of the fluid, which is having an extent of delta x,

so this is elemental strain along x. As we have discussed earlier, we are not just interested about

the strain for a fluid.



Because if you allow it to grow in time, the strain will be more, see if this delta t is larger and

larger and you integrate it over a large interval of time, this will be trivially more and more, so

measuring strain in a fluid is nothing that is important, it is just a function of the time that is

elapsed. What is more important is the rate of deformation or the rate of strain. So, the rate of

strain along x, what is that; it is basically this divided by delta t as delta t tends to 0.

So, when we say rate that means, the time rate, we always implicitly mean that so that will be

simply the partial derivative of u with respect to x. We may give it a shorthand notation say,

epsilon dot x, similarly just from your common sense, you can say what will be epsilon dot y

and what will be epsilon dot z. So, what is epsilon dot y and epsilon dot z is this, so we have

been successful in finding out a very simple thing, what is the rate of linear deformation along x

y and z in terms of the velocity component.

So, if you are given u as a function of position, v as a function of position and w as a function

of position by simple partial differentiation, it will be possible to find out the rates of change.

Now, we are interested not only just in terms of the rate of change in the linear dimension but

maybe rate of change in the volume. So, to understand that what is the rate of change in the

volume; let us say, that we are having this fluid element, which has dimensions along x, y, z as

delta x, delta y and delta z.

(Refer Slide Time: 36:38)

So, we set up coordinate axis as this is x, this is y and this is z, so delta x, delta y and delta z.

Now, what is the new length? So, we are interested to get the new volume, so what is the new

volume? The new volume is new length along x * new length along y * new length along z.



(Refer Slide Time: 37:20)

So, what is the new length along x? That is the old length plus the change. So, the old length is

delta x + the change is this one, so we can take delta x common and write this one. Similarly, it

is possible to write what is new length along y and new length along z, so let us complete those

expressions. So, the new volume is a product of these 3, so what is the new volume; minus the

old volume, yes.

So, what you have to do; you have to find out the product of this then subtract the old volume

that is delta x * delta y * delta z, you will see that the first the delta x * delta y * delta z that

term will go away, will get cancelled, then out of the remaining terms you have to neglect the

terms of maybe higher order in delta, so like if you have products like delta t square or delta x *

delta t square that type of term you tend to neglect.

Because those are higher order terms, so retain only the leading order terms because you have

to keep in mind that you are dealing with a situation again as delta x, delta y, delta z, delta t, all

tending to 0 and then what will be the term that is remaining here, yes, so obviously a product

of these 3 is there then then, what is the remaining term; these plus higher order terms will be

there that into delta t, other terms will be of order higher than delta t.

So, what is the volumetric strain; the rate of volumetric strain? So, the rate of volumetric strain

is the change in volume per unit volume per unit time just like what we found out for the linear

strain. So, when you say find out per unit volume, you are basically dividing it by this delta x,



delta y * delta z, so this is like the original volume, let us give it a symbol V with a strike

through, so that is the original volume.

So, what is the rate of volumetric strain? This change in volume divided by volume divided by

delta t and take the limit as delta t tends to 0, when the all other higher order terms in the limit

will be 0, so it is not that we are neglecting. The one delta t here will remain even after division

by delta t that will be tending to 0 as in the limit delta t tends to 0. So, then what will be the

final expression of this?

Some of these 3; so we may write it in terms of the total derivative, see the volumetric strain it

may be due to many things; change in time, change in position and a combination, so we are not

bothered about that what is the individual effect, we are bothered about the total effect, what is

the net change in the fluid element volume because of this, so this should be expressible in

terms of the total derivative.

So, it is capital D Dt of the volume with per unit volume, so this is the rate of volumetric strain

and in terms of the vector calculus notation,  you can also write it as the divergence of the

velocity  vector.  This  leads  to  a  very  important  definition;  the  definition  is  with  regard  to

incompressible flow. So, when we say that a flow is incompressible, so incompressible flow by

the name it is clear that we are looking for a case, when the fluid element does not change in

volume.

(Refer Slide Time: 43:09)



So, incompressible flow it will have what signature; one and only important signature, zero rate

of  volumetric  strain because the fluid  element  may not  be changing its  volume that  is  the

meaning of; that is even the literal meaning of incompressible that you cannot really compress

it. So, zero rate of volumetric strain and that boils down to the divergence of the velocity vector

is = 0.

So, if you are given a velocity field and you are asked to check whether it is compressible or

incompressible flow, then it is possible to check by looking into the fact, whether it is satisfying

this equation or not. If it satisfies this equation, we say that it is an incompressible flow, keep in

mind the distinction between this definition and incompressible fluid definition. So, earlier we

also introduced the concept of incompressible fluid.

And we said that a fluid is incompressible, if its density does not significantly change with

change in pressure, so that is incompressible fluid. Now, we are talking about incompressible

flow and these 2 are again related but different concepts that we have to keep in mind. So, when

you are having an incompressible flow, it is possible to characterize the particular flow in terms

of its mechanism by which it satisfies the overall conservation of mass.

To understand, how it does let us try to write an expression for conservation of mass of the fluid

element. So, we will now write conservation of mass for fluid for a fluid element, let us say that

m is the mass of a fluid element, you can express it in terms of the density and the volume, let

us say that  rho is  the density  and v is  the volume.  Since the mass is  conserved of a fluid

element, so there will be zero rate of change of mass.

So, the; since we know already the expression for the volumetric strain and in that volumetric

strain 1/v appears, it may be useful to utilize that expression by taking log of both sides and

then differentiating because then 1/v will automatically come out. So, let us take the log of both

sides and then differentiate with respect to time, when we say we want to differentiate with

respect to time, it has to be a total derivative.

So, because it is a fluid element now, it may have change with respect to change in position,

time whatever, we are bothered about now the total effect because the conservation of mass is

not for individual effects, it is a combination of total effects that gives rise to a mass of a fluid



element is conserved. So, when we write say, when we differentiate it with respect to time by

keeping that in mind, we have the left hand side like this, which again becomes 0.
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Because the mass of the fluid element is conserved, the right hand side 1/rho, so you have 0 =

1/rho d rho Dt + 1/ v dv Dt is what; is the divergence of the velocity vector or if you write in

terms of the Cartesian coordinates, when it; till you write it in a vector form it is coordinate

system independent but when you write its corresponding say, components then the components

depend on how you take your reference.

So, in a Cartesian reference it  is this, now let  us write this one, what will  be this;  use the

definition of the total derivative, okay, now you can multiply both sides by rho because density

of the fluid is not 0, so you can multiply both sides by rho and then if you multiply both sides

by rho, what you get?
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You get okay; now, you can combine these types of terms and write them in a compact form by

using the product rule of differentiation, so this = 0, will imply; this = 0, okay, just by using the

product rule of differentiation. It is again possible to write it in a compact vector notation, this

becomes divergence of rho * velocity vector that is = 0, this equation in a general understanding

is supposed to be the most fundamental differential equation in fluid mechanics.

Because no matter how complex or how simple the flow field is, it should satisfy the law of

conservation of mass, so this is a differential equation expressing the law of conservation of

mass  for  a  fluid  element  and this  is  known as  continuity  equation.  So,  if  you are given a

velocity field, you must first check whether it is satisfying the continuity equation, if it does not

satisfy the continuity equation, it is an absurd velocity field.

It may be mathematically something but it does not physically make any sense because it has to

satisfy the mass conservation. Now, briefly let us look into certain special cases of these, so

what are the special cases? 
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The first special case, we consider as steady flow. So, when you consider a steady flow, then

how this equation gets simplified to; so steady flow means the first term at a given; remember

what is the definition of steady, at a given position, any fluid property will not change with

time, so at a given position that is why the partial derivative with respect to time that means,

keeping the position frozen you are trying to find out the change in density with respect to time.

So, that is 0, if it is a steady flow, so steady flow will have that term = 0, so that will boil down

to; but that does not ensure that rho is a constant; rho might not be a function of time but might

be a function of position, so still rho remains inside the derivative, it does not get disturbed. Let

us consider a second case, incompressible flow. We have to keep in mind that there is a very big

misconcept that we should try to avoid.

What is that? Many times, we loosely saying incompressible means density is a constant, it is a

special case of incompressible flow but it is not a general case of incompressible flow because

general case of incompressible flow is what; the divergence of velocity vector = 0 that is the

definition. Now, where does it ensure that rho is a constant that basic definition never ensures

that rho is a constant?

At the same time, it can be shown that if rho is a constant then this will be satisfied, so the

converse is true that means, rho is a constant is a special case of incompressible flow but it is

not a general case. What is the general case? let us look into that. So, when you are looking

about  the general  case,  you have to  see the continuity  equation.  So, when you look at  the



continuity equation, look into this primitive form that is not the compact form but this form

before that.
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So, here when you have an incompressible flow; which terms will go away; these terms will go

away because divergence of the velocity vector is 0, so then what you are left with; the total

derivative with respect to; total derivative of density with respect with time is 0, so that means

incompressible flow means D Rho Dt; capital D Rho Dt = 0. See, a very interesting thing, it

does not mean that rho is a constant.

Because rho might be a function of position and time in such a way that this collection of terms

eventually gives rise to 0, if rho is a constant, this collection will definitely give it to be 0 but

that is a trivial solution; that is a trivial solution to the case that is rho is a constant therefore,

any derivative of rho with respect to time or position is 0 but even if any derivative of rho with

respect to position and time is not 0, still the net effect may be 0.

And then even though rho is  a  variable,  we will  say that  the  flow is  incompressible,  so a

variable density flow may also be an incompressible flow, this is a very important concept. So,

incompressible flow need not always be a constant density flow. So, a typical example is; let us

say that you have a domain like this, within this there, is a fluid. Now, this fluid changes its

phase, say it was in a particular phase, it was in liquid phase, now it becomes a vapour phase.

So, when it becomes vapour phase, it becomes lighter, so the same mass now cannot occupy

this volume, so there is; so it wants to occupy an extra volume but given a particular volume



what it will do; some extra mass we leave because you are constraining the volume and if you

are having a change in density, you must have a flow to accommodate a change in density, so

that whatever fluid is there now is accommodated within the volume that was given to you.

So, you can see that you might have a change in density at a fixed position with time because

maybe with time the phase change has triggered, so with time the density has changed, so this

has to be now adjusted with some u, v, w, so that the net effect may still be 0, so it might so

happen that now here, the net effect it may be 0, it may not be 0, so let us take an example,

where the net effect is 0.

What is that example? Maybe there was a fluid, now it is getting frozen and because of freezing

its volume gets change, so it is possible, so its density has got changed but we do not call say

liquids or solids as compressible fluids, so what has happened because if with freezing, there is

a shrinkage then there will be a deficit in volume here, maybe to satisfy the deficit in volume

there might be a material supply from all sides.

So, it is possible that to make a balance of what is happening locally and what is happening

over the volume element you might have to adjust these things with velocity across the different

phases of the element. So, in summary we can say that incompressible flow definition is the

total derivative of rho with respect to t is 0 but not just rho is a constant, okay. We will stop here

today; we have just seen one way of deriving the continuity equation.

But we will learn more by having different ways of deriving the continuity equation and that we

will do in the next class. Thank you.


