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Well, good afternoon to all of you to this session of fluid mechanics. Well, last class we 

were discussing about the surface tension, and we ultimately came to the conclusion, 

when two invisible fluids define an interface, then the concept of surface tension comes. 

That means, the inter-phase is under a stretched conditions, and mechanical energy 

stored in the surface that we recognize from the fact that, if we create an interface; that 

means, interface of a liquid for example, separating a gas, then liquid molecules have to 

be bought from the interior of the bulk of the liquid to the surface, where work is done 

against the inner intermolecular force of cohesion. By virtue of which, a mechanical 

energy is stored in the surface.  

So therefore, in an interface, it is in stretched condition and surface tension is the force 

exerted on an imaginary line on the surface; per unit length of the surface. This we 

appreciated in the last class. Now, it is because of the surface tension effect, a curved 

liquid surface separating a liquid and a gas creates a higher pressure in the concave side 

as compared to that in the convex sides. This is one phenomenon observed.  
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Now, let us see this thing here. Let us see here. This is a curve; elemental curves liquid 

surface, which distinguishes or separates the bulk of the liquid on its concave side. That 

means, this side is the bulk of the liquid and this is the convex sides and this side is the 

air. For example, air or any invisible fluid or any gas. So, this is a small curved elemental 

liquid surface. 

Now, let us see that the surface is curved in both the directions, in such a way that the 

radius of curvature in this direction is r 2, which is less. That means, it is more curved 

and in another direction is r 1 and the lengths of the curved surfaces are such that they 

sustained angles of d theta 2; that means, this is d theta 2. This angle is d theta 2. This is 

d theta 2 and this is d theta 1. This is d theta 1. This angle d theta 1 and d theta 2 at the 

respective centre of curvature. These are the respective centre of curvature. This is r 1 

and this is r 2. This is curved in both the directions; elemental curved surface. So, this 

side; that means, the convex side, this is gas and in the concave side, is the bulk of the 

liquid. We only consider a small elemental curved portion of the surface.  

Now, we see the surface tension force acts on these 4 sides. Now, these 2 sides, which 

are of radius of curvature r 2, the surface tension force acts perpendicular to this linear 

element, you see, whose lengths are r 2 d theta 2. Therefore, this force is sigma r 2 d 

theta 2, which is written here. I think you can see. So, this is the surface tension force 

acting, which is perpendicular to this curved element and it is sigma r 2 d theta 2. r 2 d 

theta 2 is the length of this element. 

Similarly, the surface tension force, which acts over these elements, this length, this is 

sigma r 1 d theta 1 because the length of this curved line is the r 1 d theta 1. So, 

according to the definition of surface tension, the total force is sigma r 1 d theta 1 in this 

direction. Now, if we look, this is a three dimensional view. If you look two dimensional 

view; that means, if you look from this angle, therefore, we see only this part of the 

curve like this, where this force is acting on like this. I am showing it by only 1 arrow. 

So, this is acting like this. So, this is sigma into r 2 d theta 2. All the forces sum up with 

this sigma into r 2 d theta 2. So, this will appear like that; sigma into r 2 d theta 2. So, 

this is d theta 1; and that means, you see these few. 

Well, so from very simple geometry, you see this is d theta 1. So, this angle will be d 

theta 1 by 2, this angle. This angle, why? This is because this angle will be this is 90 



degree, because this is tangent, this direction. So, this and this radius of curvature will be 

perpendicular. So, these angles are 90 degree, so that, this is 180 degree minus d theta 1. 

So therefore, these angles will be d theta 1 by 2.  

Similarly, if we see a view from this direction, we will see the forces are acting which 

comes; which are the forces? These forces see, if you see this view, these forces are 

acting sigma r 1 d theta 1 sigma r 1 d theta 1 and these angles are d theta 2 by 2, because 

this is d theta 2. From simple geometry, this angle, this is d theta 2 by 2 and this is d 

theta 2 by 2. See, if you can recognize this, then a simple force balance. Now, let us write 

assuming that the convex side of this liquid surface is acted on by a uniform pressure p 0, 

that is the pressure of the gas, which demarcates this liquid. Similarly, the interior of the 

liquid, the pressure is p I, which is acting perpendicular to these surfaces; that means, in 

its concave side. Let, this is p i.  

Now therefore, if we make a force balance in the vertical direction, then we get the 

surface tension forces acting sigma r 2 d theta 2. Two surfaces, so 2 sigma r 2 d theta 2 

into sin d theta 1 by 2, sin component. This is d theta 1 by 2 vertical direction. Similarly, 

the force component due to sigma r 1 d theta 1 on both sides; that means, this side and 

this side, which is shown like this is twice sigma r 1 d theta 1 sin, well, d theta 2 by 2 and 

this net force in the downward direction will be balanced by the net pressure force in the 

upward direction. That means, p i minus p 0 times this surface area over which the 

difference of pressure; that means, each individual pressure is acting over a surface area.  

So, pressure force is the pressure times the surface area. So similarly, p i into surface 

area minus p 0 into surface area p i minus p 0 into surface area, which is the product of 

these two lengths; that means, r 1 d theta 1 into r 2 d theta 2. Now, with a simple 

relationship from trigonometry, that for small angles, because this is a small elemental 

curved surface, where the sides subtends small angles d theta 1 and d theta 2 at the 

respective centers of curvature. We can write that for small angle, the sin of the angle is 

equal to the angle.  

If you see this series, the series for sin function, you will see, we can neglect the higher 

order terms. So, you can approximately write d theta 1 by 2. So, you know this thing that 

sin theta is theta. Similarly, d theta 2 is equal to d theta 2 because the higher order term 

in this series can be neglected. So, if we now substitute these in terms, in place of sin; 



that means, in place of sin d theta 1 by 2, I substitute d theta 1 by 2 and in place of sin d 

theta 2 by 2, I substitute d theta 2 by 2.  
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Then, by simplification, simple simplification, I get this p i minus p 0 into r 1 r 2 d theta 

1 d theta 2 is equal to, what we get? sigma r 2 d theta 1 d theta 2 plus sigma r 2 into, 

what? This is sigma r 1 into d theta 1 d theta 2. So ultimately, if I replace this as delta p 

define p i minus p 0, we get sigma into 1 by r 1 plus 1 by r 2. So, this is a very very 

important formula. Now therefore, we see that there is a difference in pressure created. 

That means, the concave side is having a higher pressure p i, then the convex side, where 

the gas is there and concave side is the bulk of the liquid and this difference of pressure 

is given by the surface tension coefficient and the radius of curvature of the two sides. 

This is the general case of a liquid surface, liquid interface, which is curved in both 

directions.  

Now, special cases are there. Now, first special case. Now, before coming to special 

cases, first I discuss that, if, now here, we have assumed a surface which demarcates a 

bulk of the liquid on this side. Try to understand, in the concave side and a gas on the 

convex side. But if the surface is a thin liquid surface, which has got in contact in both 

the directions, both the sides; that means, convex and concave side, the gas, then what 

happens? This surface tension force will be doubled because the surface tension acts 

from both due to top portion of the gas and due to bottom portion of the gas; that means, 



this is the surface and air is there at the top and air is there also at the bottom. For 

example, air. So therefore, from the bottom and the top, we get at the same location, the 

surface tension forces twice. That means, this will be multiplied with the 2.  

So, in case of a thin film, the curved surface as a thin film separating gases both on the 

concave and the convex sides, convex and the concave sides, then simply this will be 

doubled. That means, this is delta p will be 2 sigma into 1 by r 1 plus 1 by r 2. Again, I 

tell the difference between these two, this is the pressure difference between the liquid 

surface, a curved liquid surface, which demarcates a bulk of the liquid and a gas outside 

it. That means, there is a liquid surface, where this is the bulk of the liquid and this is 

gas. So, this is the pressure difference where. Where is a film of liquid, thin film of 

liquid, where both the sides air or gas is there, in that case what happens? The surface 

tension occurs both by the pull of the interaction between the air molecules and the liquid 

molecules and this side and air molecules and liquid molecules on the upper side. So, 2 

times multiplication will be made here. 
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So, this is the formula for thin film or thin curved surfaces. Now, few special cases I now 

just discussed. One is the spherical liquid drop. One is the spherical liquid drop. So, 

spherical liquid drop means a sphere; that means, it is a sphere full of liquid, full of 

liquid, full of liquid. So, if outside pressure is p 0. For example, uniform out ambient 

pressure is p 0. Uniform ambient pressure is p 0. So, due to this curvature, because of 



surface tension, the inside pressure will be p i. So, in the liquid, the pressure generated 

inside is p i. So, how I know this p i minus p 0? So, simply I see this formula, sigma into 

1 by r 1 plus, what is the difference here? Here, r 1 is equal to special case, r 2 is equal to 

r. So, delta p is equal to p i minus p 0 is simply 2 sigma by r, where r is the radius of the 

sphere.  

This of course, come can come from the simple fundamentals without using the formula 

that you can also make, that you cut. You can see how the forces act that you can cut the 

surface. Then you take a half liquid sphere as a free body diagram. Then we can 

understand that here the surface tension force T acts; that means, throughout the 

periphery; that means, if you see from the top view, you see this is like this. Sorry. This 

is like, sorry, this is like this. That means, through the entire periphery, the surface 

tension force is acting and this value of T is sigma into twice pi into r, if r is the radius of 

the sphere. That means, it is in the entire periphery; that means, if you cut the surface, 

this is the liquid and then you get a surface tension force coming as an external force. So, 

these are the external p 0 as it is outside p 0. These are the p 0 as it is and pressure force 

p I, then comes as an external force like this.  

So therefore, you can write sigma into 2 pie r is equal to p i minus p 0 into pi r square 

force balance. So, this will give you the same result. It is not necessary to do it from 

fundamentals. Since we know that the general expression that delta p for a liquid surface 

curved in both the directions as sigma into 1 by r 1 plus 1 by r 2, we simply, in case of a 

spherical liquid drop, put that r 1 is equal to r 2 is equal to r. 
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What happens in case of a spherical liquid bubble? Difference between the two is that 

spherical liquid bubble. In a spherical liquid drop, air is on one side and inside the liquid 

drop, the full is water or the liquid. Here, bubble contains air inside and outside; that 

means, it is this special case of this 2 sigma; that means, in case of a curved surface, 

which separates air on both the sides or gas on both the sides, concave and convex sides, 

the relationship is like that. So here, if I put r 1 is equal to r 2 is equal to r, we get delta p 

is equal to 4 sigma by r. So therefore, delta p p i minus p 0 becomes equal to 4 sigma by 

r.  

That is, p i is the, well, p i is the inside pressure and p 0 is the outside pressure. p 0 is the 

outside pressure. Another limiting case, special case is z. What is z? It is a circular cross 

section. If z of a circular cross-section of radius r, then what formula we will use? It is a 

solid z; full of liquid. So, you will use the formula, so if the internal pressure is p i and 

outside ambient pressure is p 0, then p i minus p 0 will be what? 2. Not 2. It is sigma into 

1 by r 1 plus 1 by r 2. You will use this formula. Where we will use? r 1 is equal to r and 

r 2 is equal to infinity. Very good. 

So, this becomes 0. So, delta p simply becomes equal to sigma by r. So, this is the value 

by which the inside pressure or internal pressure in a straight liquid z is more than that of 

the outside ambient pressure.  



Now, well, I come to another phenomenon of surface tension known as capillarity. 

Probably you know this. You have already read at school level that, if in a beaker or in a 

container of liquid, if we dip a tube, we see that liquid rises in that tube. Sometimes, 

liquid rises in that tube from the level of the liquid in the container in that tube. Who is 

responsible for rising of that liquid in that tube or who holds this extra amount of liquid 

height in that tube? That is purely the phenomenon of surface tension or the surface 

tension force is responsible for that.  

In some cases, we have seen that liquid, if there is a container containing liquid and a 

tube is dipped into it, the liquid should not or does not come up to the surface of the 

liquid at the container. It goes up to a height, which is lower than the height of the liquid 

label in the container. So, these two phenomenon known as capillary rise and capillary 

depression. 
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Let us look see that phenomenon of capillarity. What is this? Let us see this. If we take 

for example, water. Let this is water or any liquid, I can tell and if we dip a tube, you will 

see the water comes. Take an interface like this. An additional height of water comes like 

that. Is raised like that. Now, who is responsible for holding this additional height of 

water? For example, here the pressure is atmospheric pressure, but here, the pressure is 

the height of this water column. Let this height be h. So, who is responsible to make this 

dis-balance of pressure? That means, there must be some upward force, which is counter 



balancing this pressure. Or, other way we can tell, there must be some upward force, 

which can hold the column of water, which has been raised and this force is the prime 

cause of raising the liquid through that tube from the label in the container. So, this is 

known as capillary rise. This happens to those liquids where adhesion between the liquid 

and the solid tube; this is the solid tube, is more than the cohesion, this happens. 

For water in a glass tube, the adhesion is more than the cohesion. So, this is marked in 

case of water in a glass tube. It is found in some other cases for example, mercury in a, 

other, here you can mercury in a glass tube; that means, if you have mercury in a truf and 

put a tube like that. You will see the mercury will not come up here. So, mercury will, 

the mercury interface will go like that. So, there will be a mercury like that. So, this 

place, in this place there is no mercury. So therefore, the mercury label here in the 

container up to this, but mercury will not come up to this; that means, what is the force 

that is responsible to create these dis-balance; that means, to make up the, here the 

pressure is atmospheric pressure plus this height of the liquid, but here, pressure is 

atmospheric pressure plus this height of the liquid. Let this is the depression. This height 

is the height depression of the liquid. Here, it is the rise. So, that means, this is the 

depression. So, here the pressure is less. So, there must be some additional force in the 

downward direction to make a balance between these two. What is that? That is the 

surface tension force.  

What happens physically, now, let me explain. Because of this adhesion being more than 

the cohesion, the liquid particles are dragged along the solid surface, by virtue of which, 

the liquid is pulled. Depending upon the surface tension force, the liquid height will be 

maintained. The liquid highly will depend or depending upon the surface tension force, 

the amount of liquid will be raised. Let us consider this amount of liquid raised up to the 

height h. So, under this condition, if this is the interface, we can show that, in this 

interface here, the surface tension force T acts, surface tension force. This acts 

throughout the periphery, throughout the periphery in the linear element with an angle. 

Let this angle is theta; that means, surface tension, the direction of the surface tension, 

this is tangent to this surface with these vertical surface of this tube. Let this angle be r 

theta. This angle is known as area contact angle. So now, this is the force; that means, 

you see, that if we take the component of these force in this vertical direction, that 

balances the weight of this column. You write this now, T into, if we consider the 



diameter of this pipe is D, big D, diameter of the pipe is D. So, T is equal to pi D into 

sigma.  

So therefore, pie d sigma cos theta must balance the weight. If we neglect this portion 

and only take this cylindrical portion of the liquid weight, so this will be pi d square by 

4. That is the area times the height h into rho in volume into g. So, this is the weight of 

this column of liquid. This is being balanced by the vertical component of the surface 

tension force. This gives rise to the value of h as, what is h? 4 sigma cos theta, 4 sigma 

cos theta, 4 sigma cos theta divided by what? By rho g D. Similar expression you will get 

for the capillary depression. The physical phenomenon is that, in this case, cohesion is 

more than adhesion. So, for liquid, where cohesion is more than adhesion, the adhesion 

is less than cohesion, than what happens? The liquid molecules will crowd within each 

other. 

If their inter molecular forces, drag them out from, to come out from the free surface. 

That means, they come below the free surface. Then what happens? The surface tension 

force will act in this direction. So therefore, you see the vertical component of this 

surface tension force act in this direction, which is added up with the pressure of this less 

height and will make the balance of the pressure here. If this be the h, the difference you 

can find out is the weight of this column of liquid, which is an imaginary. It was not 

there. If this column, this liquid could have come up to this column, so this weight could 

have balanced. So, from that balance, you get the same expression h. So, here one 

interesting phenomenon comes, that the capillary rise or the capillary depression h is 

inversely proportional to d for a liquid of a particular value of sigma.  

So therefore, this is observed only in small diameter tube. As the diameter of the tube 

becomes larger, so value of h becomes smaller, so that, we cannot observe it. We do not 

observe it. That is why we sometimes tell, the capillary rise takes place in a small tube. 

Or, if you do an experiment in a very small tube, you have to give a correction for 

capillary rise. It does not mean that physically capillary rise or capillary depression is 

attached to the small tubes only. Capillary depression and capillary rise is a phenomenon, 

which is attached to any diameter tube. So, liquid will always rise from this level in the 

container and liquid will always goes with a depression from the level of the container, 

depending upon the fact, whether adhesion is more than cohesion or adhesion is less than 

the cohesion. But the fact is that, this rise is inversely proportional to the diameter. 



If diameter is bigger, this rise and depression is so negligible. We cannot observe it. We 

see that the meniscus in the tube is at the same level of the liquid in the container, where 

the tube is dipped and the bulk of the liquid (( )). Well, so this is the phenomenon of 

capillarity. I think that I end it here with the surface tension. Before I close down the 

lecture, let us go through two very interesting problems. 
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Let us see. First example, 1. Problem, please see. problem 1. A body weighing 1000 

Newton slides down at a uniform speed of 1 meter per second. Again, a body weighing 

1000 Newton slides down at a uniform speed of 1 meter per second. Along a lubricated 

inclined plane making 30 degree angle with the horizontal. Well, along a lubricated 

inclined plane making 30 degree angle with the horizontal. The viscosity of lubricant is 

0.1 kg per meter second. This is the unit of the viscosity mu. You can see from the 

equation tau is equal to mu d u d y and the contact area of the body is 0.25 meter square. 

Well, determine the lubricant thickness assuming a linear velocity distribution. Well, so 

let me solve this problem. A body weighing 1000 Newton slides down at a uniform 

speed of 1 meter per second along a lubricated inclined plane making 30 degree angle 

with the horizontal. The viscosity of lubricant is 0.1 kg per meter second and the contact 

area of the body is 0.25 meter square. Determine the lubricant thickness assuming a 

linear velocity distribution. It is a very simple problem. 
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So, problem is like this. There is a, this is the area. This is 30 degree. Let this is the 

exaggerated view, thin film of the liquid and this is the body, which is moving with a 

velocity of U. This big capital velocity of 1 constant velocity of 1 meter per second. 

Now, what are the forces acting on the body? You recognize? One is its weight acting 

downward, and w is equal to 1000 Newton. Another is the drag force acting on the body, 

because body is sliding down, because of its weight along the liquid over a liquid film, 

whose thickness, let we have to find out h. So, this shear force, because of the flow, 

when the body flows or moves in this direction, this induces a flow in the liquid. 

When a flow in the liquid is set of, the liquid shear stress field is generated. So, this shear 

stress gives in opposing force F on the body. So, body is under equilibrium between 

these two forces, W and F, because there is no inertia force and speed is uniform. So, the 

simple force balance of the body is W. So, this angle is 60 degree. So, in this direction, 

W cos 60 degree is equal to F. Simple case, because this direction, the dragging force is 

F and this is balanced by the component of the weight in this direction. So, only thing 

from fluid mechanics is to find F. So, because of this motion U, there is a motion which 

is being setup in the liquid. It has been told in the problem, you consider a linear velocity 

distribution. What will be the velocity distribution? 

As I have told in the earlier class, that mostly condition demands that the velocity of the 

fluid on this surface will be 0. Velocity of the fluid of this layer, what will be the velocity 



of the fluid in this layer? 0. How? 1 meter per second that is U; that means, I am drawing 

the velocity variation here itself. For clarity, I am doing it here. It will be 1 meter per 

second, because relative velocity is 0. That means, it is moving with capital U. That is 1 

meter per second. So therefore, the velocity profile will be u is equal to, small u is equal 

to capital U into y by h. What is y? I consider y in this direction coordinate and h is the 

liquid film thickness, which I have to find out. So therefore, d u d y is constant in this 

case, which is capital U by h; linear velocity distribution. So therefore, slope is constant. 

So, d u d y is constant. So, shear, so therefore, tau is mu into u by h. Very simple. 

So, in a linear velocity distribution from 0 to capital U, that is the speed of the solid 

body, because of no slip condition. Now, you write the value mu is 0.1 kg per meter 

second and u is 1 meter per second and h. So, f will be tau into contact area; that means, 

this is equal to 0.1 into 0.25 divided by h. So, if you put this value of f and the value of w 

as 1000 Newton and cos 60 half, you get the value of h as 0.05 into 10 to the power 

minus 3 meter. All are in m k s unit is equal to 0.05 millimeter. Alright? Very simple 

problem, school level problem. 
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Another problem, which is a little tougher. Example 2. A spherical soap bubble, quick, a 

spherical soap bubble of diameter d 1 coalesces with another bubble of diameter d 2. One 

spherical soap bubble of diameter d 1 coalesces with another bubble of diameter d 2 to 

form a single bubble of diameter d 3. Single bubble containing the same amount of air; 



that means, the 2 bubbles air is equal to the air of the third bubble after coalescence. 

Assuming an isothermal process, derive an expression for d 3 as a function of d 1, d 2, 

the ambient pressure p 0 and the surface tension of soap solution in air.  

So again, I read, spherical soap bubble of diameter d 1 coalesces with another bubble of 

diameter d 2 to form a third single bubble of diameter d 3 containing the same amount of 

air assuming an isothermal process; that means, the process is isothermal of coalescence 

process. This is a process constant given. Otherwise, we cannot solve. Derive an 

expression for d 3 as a function of d 1, d 2, the ambient pressure p 0 and the surface 

tension of soap solution. Very simple problem. 
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Let us see that. Let us consider a soap bubble of diameter d 1. Let us consider the mass 

of air inside is m 1. Let us consider another soap bubble of diameter d 2 and mass of air, 

let m 2. Two coalesces and after coalescence, they form a soap bubble of diameter d 3. 

Let the mass of the air m 3. Now, what physics will be followed? What are the 

conservation? What are the things which are conserved after coalescence? One is the 

mass of the air. It has been told. That means, m 1 plus m 2 is equal to m 3. Now, let the 

pressure inside the soap bubble is p 1, inside this soap bubble is p 2 and inside this soap 

bubble is p 3 and there is no such direct relationship at present we get from between p 1, 

p 2, and p 3.  



Let the volume of this soap bubble is v 1. Let the volume of this soap bubble is v 2 with 

a cut and let the volume of this soap bubble is v 3. Now, what we can do and now how 

can we relate this p’s? We can relate these p’s in two ways. Ambient pressure is p 0. One 

is the surface tension, which can determine the difference of p 1 from p 0, difference of p 

2 from p 0, same ambient pressure and different of p 3 from p 0. But to relate p 1 p 2 p 3, 

we will have to take the help of the Ideal Gas laws. 

We will consider the air in the bubble to behave as an ideal gas. We will consider the air 

in the bubble to behave as an ideal gas. This constant or this condition, this assumption, 

you will have to take. Then only we can relate the pressure and the volume. So, if we 

write this for the first bubble, p 1 v 1 is equal to m 1 and r is the characteristic gas 

constant and T is the temperature. Another condition given in the temperatures are same 

that means, the process is isothermal. Temperature of the air in this bubble and the 

temperature of the air in this bubble and after the coalescence, for the single bubble, 

remains same as T. You know the equation of state for an ideal gas states, that p into v, 

that the pressure and the volume of the gas is equal to the, if a mass of gas m occupies a 

volume v and the pressure exerted is p v is equal to m R T, where T is the characteristic 

gas constant. 

These, I can write for the first bubble and I can also write for the second bubble, the 

same equation with the same characteristic gas constant, because the same here with the 

same temperature T, since the process is isothermal. If we add these two, we get p 1 plus 

p 2, sorry, we get p 1 v 1 plus p 2 v 2 is equal to m 1 plus m 2 into r T is equal to m 3 

into r T. Because m 1 plus m 2 is m 3. Again, m 3 into r T can be written as p 3. What is 

m 3 into r T? It is equal to p 3 v 3. 



(Refer Slide Time: 37:02) 

 

So therefore, we get from this p 1 v 1 plus p 2 v 2 is equal to p 3 v 3. Now, we can write 

p 1 is equal to, from the surface tension concept p 0 plus, if you recall this, 4 sigma by r; 

that means, 8 sigma by d 1, because it is a bubble. Similarly, we can write p 2 is p 0 plus 

8 sigma by d 2. Similarly, we can write p 3 is equal to p 0 plus 8 sigma by d 3 and v 1 is 

proportional to d 1 cube, v 2 is proportional to d 2 cube and v 3 is d 3 cube. 

If you write this, you get 8 sigma by d 1 into d 1 cube, pi will be canceling, so that, p 0 

plus 8 sigma by d 2 into d 2 cube is equal to p 0 plus 8 sigma. So, this is the required 

expression. See, if I know the values for d 1, d 2, sigma and p 0, I can find out d 3. So, 

this the required expression for the final diameter of the final single bubble in terms of 

the diameter of the individual bubbles, the ambient pressure and the surface tension of 

the soap solution. Well, so with this I conclude this lecture on introduction and 

fundamental concept. So, next class I will start the fluids statics. So, introduction and the 

fundamental concepts, which covers the basic properties of the fluid and this concludes 

this section of the lecture. So, next class I will start fluid statics.  

Thank you. 

 


