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Second Law and its Corollaries – II 

I welcome you to this session of thermodynamics. In the last session, we discussed that if two 

engines operate between the same temperature limits, one is the temperature for heat addition 

and another is the temperature for heat rejection. If one is a reversible engine, its efficiency is 

higher than that of an irreversible engine. The corollary to it is that all reversible engines 

operating between the same temperature limits have the same efficiency. So these things we 

discussed and proved logically, but I think there was little confusion in its understanding through 

logic, that is why I will repeat this thing again, this proof. 

(Refer Slide Time: 01:56)  

 

You see that, let there are two thermal reservoirs one is at temperature t1 another is at 

temperature t2; t1 is greater than t2 and we know that the two temperature reservoirs are essential 

for a heat engine to operate to develop work in a continuous cycle. 



Let us consider one reversible heat engine, HER, which takes heat Q1R, this subscript R is used 

for reversible engine from this high temperature reservoir, source t1, and it has to reject according 

to thermodynamics second law, the amount Q2R to the thermal reservoir t2. While doing so, it 

develops a work WR. Here also it is written WR which is equal to, from the first law of 

thermodynamics that is energy balance Q1R minus Q2R. Second law tells that Q2R cannot be 0, 

there has to be Q2R that is the only restriction, but first law is always valid like this. We consider 

another heat engine, HE, working in a continuous cycle which is not a reversible heat engine, 

which draws an amount of heat Q1 which we said deliberately for the proof equals to that of the 

heat taken by the reversible engine, that means Q1R. 

Obviously, since HE is an irreversible engine, it will reject an amount of heat Q2 which is 

different from that (Refer Slide Time: 03:11 min). If the heat addition and rejections are same, 

the work quantity will be same by the first law. Out of these three quantities - heat addition, heat 

rejection, and work - two are independent and one is dependent by the conservation of energy. 

So, they cannot be same for a reversible engine. When it is an irreversible engine, they have to 

be different. That is the very first logic.  

Let us consider that HE rejects Q2 which is different from Q2R and while doing so it develops a 

work W which equals to Q1 minus Q2. Now we have to prove that, now what is eta, first of all? 

Definition of eta is what? Work for reversible engine, work developed by the heat added, etaR is 

equal to WR by Q1R. What is eta for this irreversible engine which is a natural engine? W by Q1R. 

For both it is Q1R since Q1 has been set Q1. Now, we have to prove that etaR is greater than eta. 

To prove this, we first assume that etaR is less than eta. We first assume that and then we prove 

that this is not possible. How? If etaR is less than eta, then what we get? WR is less than W, etaR 

is less than eta, Q1R is same, so WR is less than W, or we can write other way W is greater than 

WR.  

Now what we can do? Just see here. That is the most important thing (Refer Slide Time: 05:01 

min). If HER is a reversible heat engine, all the processes can be reversed. Reversible heat engine 

means, that all the processes are reversible processes, so all processes can be reversed without 

any other change in the surrounding. According to the requirement of a reversible process or 

characteristic feature of a reversible process, that means, if we reverse all the processes of this 

heat engine it will act as a reversible heat pump, HPR. If this reversible heat pump HPR is 

allowed to operate then it will give the same amount of heat Q1R in t1 which we use to take while 



acting as an engine. It will draw the same amount of heat Q2R from the reservoir t2 and it will 

demand the same amount of work which it delivered WR to the surrounding incase of an engine. 

That means, this work and heat quantities interactions are equal in magnitude, but opposite in 

direction (Refer Slide Time: 06:07). That is the characteristic feature of the reversible heat 

engine. But if we reverse the heat engine, HE, it will work as a heat pump. Do not consider that 

as it is an irreversible heat engine, it cannot be made to operate as a heat pump. In that case, the 

directions of the heating directions will be opposite, definitely, the working directions will be 

opposite. It will draw work, it will give heat; in that case, the quantities will not be same. If it has 

to elevate heat or pump heat Q1 to the temperature t1, it may not draw the work W from the 

surrounding, it may not draw or it may not take the heat Q2 from this t2. That is the difference 

between a reversible and irreversible engine.  

Therefore it is always useful for us to prove W is greater than WR to make this reversible heat 

engine to operate in a reverse direction as a reversible heat pump, so that the quantities reveal the 

same magnitude, but in the opposite direction. Now, we have assumed that etaR, the efficiency of 

the reversible heat engine, is less than eta, which means the work developed W by the 

irreversible heat engine is more than that of the work developed by the reversible engine WR. 

Therefore in this case what we can do? We can couple these two, HPR and HE so that the work 

developed from the heat engine can be utilized to dive the heat pump and in spite of that, we get 

a net amount of work W minus WR as the work output. 

Since these two heat quantities, Q1R and Q1, are same, they can be joined by a diathermic wall 

(Refer Slide Time: 07:40 min). This reservoir t1 is redundant. The working fluid of this heat 

pump HPR will act as the thermal reservoir for the heat engine HE, and the working fluid of this 

engine will act as the thermal reservoir of this heat pump HPR. The heat rejected by this heat 

pump will be delivered to this heat engine as the additional thing. Therefore, the entire system 

corresponds to a machine which interacts with only one thermal reservoir (Refer Slide Time: 

08:09 min), a thermal reservoir of a single fixed temperature and developing a network which is 

not possible and violation of Kelvin Planck’s statement. This is violation of Kelvin Planck’s 

statement of second law.  

Now, this, etaR is less than eta, is not possible. Therefore there are two possibilities, etaR is 

greater than eta or etaR is equal to eta. Now the logic is that etaR cannot be equal to eta, because 

an irreversible engine and reversible engine are different, so their heating interactions and 



working interactions are different. So that when we reverse an irreversible engine, it will not 

reveal the same magnitude. It has to be a different engine than that of the reversible one, so we 

cut this logic, these two, etaR and eta, cannot be equal either this will be greater or less than this. 

That means, these two engines will be different. So with this logic, we can prove that the only go 

is that etaR is greater than eta. It is clear 

Now the next step is that if both of them, HER and HE are reversible then they are of equal 

efficiencies. The next corollary to this theorem is that if there are number of reversible engines 

operating between the two fixed temperatures their efficiencies will be same, they cannot be 

different. How to prove it? Now the same thing, I am not going to a different drawing. Consider 

both the engines are now reversible. I am not giving this subscript 2R WR then it will be more 

congested, because then R1, R2. Let us consider this Q2 (Refer Slide Time: 10:02 min) is the heat 

rejected by another reversible engine. W is the work developed by another reversible engine. We 

consider two different reversible engines and we consider similar way that etaR is greater than 

eta, that means efficiency of the reversible engine HER is greater than the HE. 

Now in this case, I consider this machine, HE, also as a reversible, eta is the efficiency of a 

reversible engine that is the engine at the right, right to me (Refer Slide Time: 10:27 min). Now, 

in this case, as I have shown, I can reverse the HER and prove that etaR is less than eta is not 

possible. Now since HE is a reversible engine, in the next step, I can reverse this one and can get 

these quantities exactly in the same magnitude (Refer Slide Time: 10:45 min), because which I 

could not do in the earlier case, but now I can do it, it is also reversible. That means Q1 and Q2. 

Now when I assume this, etaR is greater than eta, I reverse the one, HER. When I assume that, 

etaR is less than eta or eta is greater than etaR, then I reverseHE. If I reverse this one when etaR is 

greater than eta then, what happened? to be proved? etaR is less than eta, then W is greater than 

WR. 

In that case, I will reverse HER. Now I will take eta less than etaR, that means, WR is greater than 

is W. In that case, I will reverse the HE. First, I considered etaR is less than eta that means W is 

more than WR. So, I reverse the HER and we proved that etaR is less than eta is not possible. Now 

I consider eta less than etaR and I reverse, when we consider eta less than etaR, means WR greater 

than W, I reverse HE. Now here since, it is also a reversible engine at the beginning we have 

considered here the both are reversible. Then I can reverse it.  



In the similar manner, I can prove there is a work because WR is a more than W. Network WR 

minus W coming out of these two, HPR and HE. We can couple these two HPR and HE and HER 

will remain as a heat engine. In that case, we can couple these two, HER and HE and we get the 

work, WR is greater than W, which is violation of Kelvin Planck’s statement. We proved neither 

etaR is less than eta nor eta is less than etaR. The only possibility is the eta is equal to etaR. Try to 

understand the logic, so that if two of the reversible engines, then if I assume that. One of these 

engines for example, etaR is less than this, then I reverse this engine, HER and prove that this is a 

violation of Kelvin Planck’s statement. In another case, if I consider HE is less than the engine 

HER, the efficiency of the engine, HE is less than HER then I reverse HE and I can prove that the 

equivalent one is a machine which interacts with a thermal reservoir at a single fixed temperature 

and developing a network violation of Kelvin Planck’s statement. So, only opportunity is eta is 

equal to etaR. So, I think logic is convincing, but it is not at all essential to memorize this thing, 

because nobody will ask us for this how did you prove it. 

It is extremely important to know this theorem throughout the course of thermodynamics 

wherever you go even at the higher level. What is this theorem? If there are two thermal 

reservoirs at different temperatures t1 and t2 a heat engine will operate, it will take heat from the 

higher temperature reservoir, it will reject heat at the lower temperature reservoir and will 

operate in a continuous cyclic process and will develop work which according to first law of 

thermodynamics, will be the difference between the heat added and the heat rejected. This is 

number one.  

Number two, if there is a reversible engine operating between the same temperature limits its 

efficiency is the highest among all other irreversible engines. Next is, all reversible engines have 

the same efficiency if they operate under the same temperature limits. The efficiency of 

reversible engine is unique when the temperature limits are prescribed. This acts as the 

maximum performance criterion or the ideal value for any natural engine. That means the 

efficiency of any natural engine, so at the same time you can think that is true that all natural 

engines will be having different efficiencies, operating between the same temperature limits. 

Even the maximum of these efficiencies is lower than the efficiency of a reversible heat engine 

operating between the same temperature limits. 



(Refer Slide Time: 15:16)  

 

So with this, I will go to a very interesting thing that concept of absolute thermodynamic scale of 

temperature. Now, so far what you have read, if we have a thermal reservoir at any temperature 

t1, at any conventional scale. Let us consider Celsius scale and if there is a heat engine which is a 

reversible one HER. If there is a reversible heat engine and it takes Q1 amount of heat. Now this is 

the block diagram of any heat engine. Now, we know that the efficiency of a reversible heat 

engine is fixed when the two temperatures are fixed. When the two temperatures are fixed the 

efficiency of a reversible engine is uniquely fixed. All reversible engines have the same 

efficiencies. 

The second part of the Carnot’s theorem which can be expressed mathematically that efficiency 

of reversible engine, I can give this etaR is therefore a function of these two temperatures, etaR is 

equal to function of temperatures t1 and t2. Now, how do we define the efficiency? Now in all 

cases the efficiency is defined by the unique manner that is work done by heat added. Now I am 

not using the subscript R. Let us use the subscript R for your understanding, for a reversible 

engine. 

Now the efficiency is same for reversible or irreversible engine. It is the work divided by the heat 

added. Similarly, the work is the difference between the two heat quantities, it is also same for 

both the engines, because it is the law of conservation of energy. There is no restrictions for 

friction and other conditions that irreversibility. Therefore, it is valid; you have to remember that. 

In this case, Q1R minus Q2R by Q1R, so we can write 1 minus Q2R by Q1R. We see that, etaR is a 



function of temperature t1 and t2 from which we can tell this is a very important conclusion. That 

the ratio of the heat interactions, I write in this fashion it looks nice, that heat added to heat 

rejected is some function of two temperatures. It is a very important conclusion that the ratio of 

heat added to heat rejected is a function of two temperatures (Refer Slide Time: 18:25 min), the 

ratio of the heat interactions Q2R or Q1R also. That means the ratio of the two heat quantities of 

interactions by the reversible heat engine are a function of temperatures only. This is valid only 

for a reversible engine. For irreversible engine, it is not so. This is because, for irreversible 

engines if t1 t2 are fixed, different irreversible engines will depict different efficiencies. It is 

because of the fact that all reversible engines have the same efficiency when t1 and t2 are fixed. 

The efficiency of a reversible engine is a function of the two temperatures only. 

Now we will exploit this definition to define thermodynamic scale of temperature. At this 

moment, we do not know anything about this functional relationship of t1 and t2. We can only 

express in an implicit form like this (Refer Slide Time:19:11 min) that  some function of t1 and 

t2, unknown function, but let us utilize the concept of heat engine to go one step further to give 

some particular form of the function. What is that? We remember this definition and then we 

construct this. 

(Refer Slide Time: 19:29)  

 

Let us consider a reversible engine, there are three temperatures. One, now here all reversible 

engines, I am not using subscript R, so one reversible engine is heat engine, HEA which takes 

heat Q1 from a thermal reservoir t1 and rejects heat Q2 to a thermal reservoir  t1 small t1 you give 



because, now it is a conventional scale and let us consider a Celsius scale. Therefore, t1 has to be 

greater than t2 and HEA develops a work WA which must be equal to Q1 minus Q2. Now we 

consider another heat engine, HEB, which takes this heat Q2 from this thermal reservoir, t2. This 

thermal reservoir, t2, is in contact with both the engines. So, this heat engine B takes this heat Q2 

from the thermal reservoir t2 and delivers or rejects heat Q3 at another thermal reservoir t3, where 

t3 is less than t2 obviously, and it develops a work WB which is equal to Q2 minus Q3. 

Now, according to this relation that the ratios of heat interactions are the functions of the 

temperatures, we can write for the heat engine HEA, Q1 by Q2, all are reversible engines. So I am 

not writing the subscript R any more, is equal to what? Same, function of t1 t2. Q1 by Q2 is equal 

to the functions of t1 and t2. For the reversible engine HEB, what it will be? Q2 by Q3 and it will 

be equal to the same function with the argument change, because here the temperatures are t2, t3. 

Same function F. If we consider these two heats, the heat rejected by the heat engine A and the 

heat taken by the heat engine B, now we can remove this reservoir, t2, because, we can make 

these two heat engines, A and B, connected. So that heat rejected by this heat engine A will be 

taken by this heat engine B. That means the working fluid of heat engine A will be the source or 

thermal reservoir for the working fluid of heat engine B and the vice versa. 

So that we can get rid of this t2 and we can connect this heat engines A and B. I am not drawing 

this separate figure. In that case, the combination of A and B (Refer Slide Time: 22:14 min), 

these are known as heat engines in series, will be an equivalent heat engine developing a work of 

WA plus WB and interacting with thermal reservoirs t1 and t3. They are taking heat that means 

equivalent engine is taking heat Q1 from t1 and rejecting heat Q3 to t3. For that equivalent engine 

also one can write Q1 by Q3 is the same function t1, t3.  

Now this gives a further clue (Refer Slide Time: 22:44 min) to the type of this function. We may 

not know this function explicitly, but at least a type of the function is known the particular type 

how we can write this? If we see the left hand side, we can write this function of t2, t3, Q2 by Q3. 

is what? How to write it? I think it will be better if we write this way Function of t1, t2 that will 

be better becomes is equal to Q1 by Q2, means what? Q1 by Q2 means Q1 by Q3 divided byQ2 by 

Q3 that means function of, anyway we can write, there are various ways we can write this, is now 

very simple t2, t3 (Refer Slide Time: 23:36 min). That means, Q1 by Q2 is equal to Q1 by Q3 

divided by Q3 by Q2. Anyway we can write, Q2 by Q3 also the similar way this into this (Refer 

Slide Time: 23:47 min). So, if we write this way, then we see that the function should be such 



that the function of t1, t2 must come out as the quotient of the two functions one is t1, t3 and other 

is the function t2, t3. So, what is the alternative? 

So, the alternative is this, it can only happen if and only if this function can be expressed as a 

function of t1 and t2, like this, in terms of quotients (Refer Slide Time: 24:22 min). So that it 

cancels out, so this is very important. Where it comes from? That if this, function of t1 t2 is equal 

to function of t1 t3 by function of t2 t3 has to be true, this is only possible if this function and 

relationship, function of t1 t2, is of this form, function of t1 by function of t2. If it can be expressed 

by this, only we can get this relationship. Any of these combinations, Q2 by Q3 is equal to 

function of t2 t3 or Q1 by Q3 is equal to function of t1 t3, will give like this provided, this becomes 

a function of t1 by function of t2. Clear? Okay, very good.  

Now this function of t1 divided by t2 is the base, first we started with that the heat interactions by 

a reversible engine between the two thermal reservoirs is a function of two temperatures. Then 

we came to a conclusion using two reversible heat engines in series that this function will have a 

shape like this, function of t1 by function of t2, in terms of quotients. The type of function will be 

like these that functions of t1, t2 should be a function of t1 divided by another function of t2, same 

function. 

This function, T1 by T2, is ultimately declared as the absolute thermodynamic temperature scale 

(Refer Slide Time: 25:40 min). This function itself, this is the function of temperature only, is 

defined to be the absolute thermodynamic temperature scale. Therefore, the absolute 

thermodynamic temperature scales are defined. So what is F  t1 t2? It is Q1 by Q2. Therefore, what 

we get? Q1 by Q2 is T1 by T2. Now, we see all these functions are defined as the quotient, Q1 by 

Q2 is phi T1 by phi T2. Similarly, Q2 by Q3 function will be phi T2 by phi T3. So, this function, Q1 

by Q3 will be a function of T1 by function of T3. So, these functions are defined as the absolute 

thermodynamic temperature scale. The absolute thermodynamic temperature scale is declared to 

be that function of the temperature, this may be in any conventional scale which means, the basic 

definition of absolute thermodynamic temperature scale or absolute thermodynamic scale of 

temperature is this one, Q1 by Q2 is equal to T1 by T2. It is such the ratio of these two 

temperatures is equal to the ratio of the heat interactions by a reversible heat engine.  

So immediate question comes, then how do we fix this temperature? How do we determine this 

temperature? We cannot have any reversible engine in practice, this is an ideal abstraction. Yes, 

its basic definition is like this, but afterwards we will see that the heat interactions, the ratio of 



heat interactions by ideal heat engines can be expressed in terms of other properties, other 

measurable properties through which we can ultimately determine in practice the absolute 

thermodynamic temperature scale. 

Afterwards, it will be shown that this absolute thermodynamic temperature scale which we are 

now defining following the second law of thermodynamics is exactly same to the ideal gas 

temperature scale which we have already read. Ideal gas temperature scale, they are identical. 

That will be proved afterwards, but now we learned that absolute thermodynamic temperature 

scale or absolute temperature on an absolute thermodynamic scale is such that their ratios equals 

to the ratio of the heat interactions by a reversible heat engine connected between these two 

temperatures. If a heat engine is connected between two reservoirs and if we want to designate 

the temperature of the reservoirs by absolute thermodynamic temperature scale as t1 and t2 then 

the ratio of t1 and t2 will be the ratio of Q1 by Q2 by the heat engine. 

So, here also you see, like your internal energy, internal energy definition came through its 

difference, not the absolute value. The difference of internal energy is the heat and work 

interactions, net heat and work interactions by a system in a process. Similarly, the definition of 

absolute thermodynamic temperature scale has also come through its ratio t1 by t2. 

(Refer Slide Time: 28:50)  

 

Now, with this you can write that if there is a reversible engine, again the same thing, It will be a 

little boring at this moment, I denote the temperatures as the absolute thermodynamic and you 

consider a reversible engine, HER, and giving heat T2. We can write Q1 by Q2 is T1 by T2. What 



is the efficiency? W is Q1 minus Q2. Its efficiency eta is W by Q1 is 1 minus Q2 by Q1 (Refer 

Slide Time: 29;34 min). This is valid for all engines. There is no restriction. It is the definition of 

efficiency and then this part, W by Q1 is the definition of efficiency and this part, Q2 by Q1, is the 

first law thermodynamics. But for a reversible engine, we can write it as 1 minus T2 by T1 which 

means that, the efficiency of a reversible engine working between two temperature limits T1 and 

T2, where T1 is the temperature of heat addition and T2 is the temperature of the thermal 

reservoirs where heat is being rejected, is given by 1 minus T2 by T1. This is the efficiency of all 

reversible engines which operate between the two temperature limits (Refer Slide Time: 30:22 

min), T2 as the temperature of heat rejection, T1 as the temperature of the heat addition. Here, 

one question comes which will be cleared later on that in case the temperature is not constant 

during the heat addition and heat rejection process. A reversible engine not necessarily always 

has to take heat at a constant temperature. There may be a variation in temperature while heat is 

added and while heat is rejected. In that case this, T2 by T1 will be treated as mean temperature 

of heat addition that means 1 minus mean temperature of heat rejection by mean temperature of 

heat addition. This will be cleared afterwards. 

But at the present moment we learn through a very simple case that, let us consider the 

temperature of heat addition is constant that means isothermal heat addition process, isothermal 

heat rejection process. This is the reversible heat engine therefore efficiency is 1 minus 

temperature of heat rejection by temperature of heat addition. But this is not true for an 

irreversible engine (Refer Slide Time: 31:21 min). We cannot write. We can write only this, 

because this relationship, Q1 by Q2 is equal to T1 by T2, is not valid for an irreversible engine. 

For a heat pump or refrigerator, HP or refrigerator, I am not writing the full, it is other way, it is 

giving heat, elevating heat to a higher temperature. Here, in the case of an irreversible heat 

engine, what happens? T1 is greater thanT2 here also, in the case of heat pump or refrigerator, the 

same thing, T1 is greater thanT2. It draws work from the surrounding, in doing so which again 

according to first law W will be Q1 minusQ2 or Q1 is equal to Q2 plus W, it is written in this 

fashion so that this is manifested that work is being converted into heat. We write Q1 is Q2 plus 

W, it is a convention. Here we do not try W is Q1 minus Q2, same thing we can write because it is 

the conservation of energy. So, this is the way as a heat pump or refrigerator works. So, COP of 

a heat pump is defined for any engine reversible or irreversible, as its performance that is how 

much heat is being elevated at high temperature divided by how much work it takes.  



Similarly, COP of a refrigerator is, the denominator is the same numerator is changed because 

this is the heat, how much heat is being taken from the lower temperature divided by this, that is 

Q2 by W. These two are the definitions. From first law we can write this, Q1 by W is Q1 divided 

by Q1 minus Q2. Similarly, Q2 by W is Q2 divided by Q1 minus Q2 and one important relationship 

comes from this that COP of a HP is one plus COP of a refrigerator. That is a very simple thing, I 

am not doing that because this is so simple because this is the definition (Refer Slide Time: 

33:27 min) I already told earlier that COP of a heat pump is Q1 by W, COP of a refrigerator is Q2 

by W. With reference to this figure, Q1 is the heat elevator to higher temperature, Q2 is the heat 

rejected taken from this lower temperature T2, lower temperature. So, a same machine works 

both as a heat pump also as a refrigerator. When our attention is here, at Q1, it is heat pump, 

when our desired objective is this one Q2 taking heat from a lower temperature, it is refrigerator. 

COP of a heat pump is defined like this, then by the principle of first law of thermodynamics Q1 

by W is Q1 divided by Q1 minus Q2. So, these are the definitions. 

COP of a heat pump will be 1 plus COP of a refrigerator. That means, COP of a heat pump 

minus COP of a refrigerator will be 1, because if we subtract Q1 by Q1 minus Q2 from Q2 by Q1 

minus Q2 you will get 1, but now I come to a case of COP of a reversible heat pump,  This will 

be T1 by T1 minus T2 these Q values may be replaced by T values, because Q1 by Q2 is T1 by T2. 

Similarly, COP of a reversible refrigerator is equal to T2 by T1 minus T2. That means, this 

definition of COP in terms of the temperatures are valid for reversible machine. That means 

reversible heat pump and reversible refrigerator like the reversible engines. This means that 

ratios of Q’s can be substituted in the ratios of the temperatures that are as simple as this. 

Now, little bit of conceptual thing I will discuss that so many things we have learnt through a 

reversible engine, but how to conceive a reversible engine? First, Carnot’s gave an idea that how 

we can achieve a reversible. You know, things came like that. So, many things were developed 

by physicists about the reversible engines and ideal performance and everybody knows that 

reversible process is the ideal process where the dissipation is nil. So a reversible cycle has the 

highest efficiency amongst all irreversible cycles. After knowing all these things then an 

engineer started thinking how to achieve an engine very close to a reversible engine. You know 

the reversible engine or reversible cycle is our ideal performance criterion. Therefore the thought 

process started evolving that how one can go very close to a reversible process. So, it was Sadi 

Carnot, he was basically an engineer and physicist, of course who first developed a concept by 



which one can visualize in practice a reversible engine and that engine was named as Carnot’s 

engine. 

(Refer Slide Time: 36:36)  

 

Let us consider the Carnot’s engine. This was the first concept of a reversible engine  given by 

Sadi Carnot. He was a French, he was an engineer,  a mechanical engineer and then converted in 

to a physicist. Carnot’s engine consists of 4 processes. Just to write first the processes. One is 

reversible isothermal process of heat addition. He conceived a reversible isothermal process, 

because it is very simple to us to conceive. What is the criterion of a reversible heat transfer 

addition or rejection? That the temperature difference between the two system interacting heat 

will be 0, but this is not possible. Earlier also I told that a reversible process means there cannot 

be any process. Therefore, in a limit a reversible process can be thought if the temperature 

difference can be maintained infinite small. 

It is always easy to conceive that both the system and its surrounding maintain the same dT 

throughout and to do it both the system and the surrounding has to be at constant temperature. 

Therefore, it is always better to conceive an isothermal process of heat transfer to be a reversible 

heat transfer process. Otherwise, what will happen? If you consider the process to vary with the 

temperature which happens with a finite body when it gives heats or looses heats its temperature 

varies then always we will think of an infinite number of reservoirs as I explained earlier for 

reversible heat transfer process. Therefore, always system and surroundings will have to be in 

contact with each other through an infinite small temperature difference. That is the reason for 



which in isothermal process of heat interactions heat addition or rejections had been thought of 

as a reversible heat transfer process. Nevertheless, the process where the temperature varies is 

not a reversible heat addition heat rejection process. Many students or even not students many 

people have these confusions that always think that for a heat addition process to be reversible or 

heat rejection process to be reversible it has to be isothermal. No, this is because of this fact that 

it is easy to conceive. Carnot initially thought that the process of heat addition should be 

isothermal and reversal. Isothermal process also does not be in reversible. These are the concepts 

I am telling in thermodynamics, because all these things are written in the book. That for 

example two systems are there heat is being transferred from one to other and they are 

maintaining same temperature. System temperature is T1 and the surrounding temperature is T2 

and while receiving heat, system is at constant temperature T1 surrounding is at constant 

temperature T2, but there is a finite gap, T1 minus T2, it is not a reversible heat transfer process. 

Requirement of a reversible heat transfer process is delta t between the system and this 

surrounding should be as small as possible. Whether the system remains isothermal or not, that is 

not the criteria. But if system remains isothermal, surrounding has to remain isothermal. 

Otherwise delta t, small delta t will not be maintained. This is a very useful concept. Next 

process is a reversible adiabatic process of expansion. When I will come to different cycle, then I 

will explain how the reversible heat addition through varying temperatures is possible. What is 

adiabatic? Do you know this terminology adiabatic? 

Sir, no heat interaction.   

Adiabatic process is a process during which there is no heat interaction between the system and 

the surrounding that means the entire boundary of the system is made insulated. Then reversible 

isothermal process of heat rejection. According to second law thermodynamics there should be a 

process of heat because only adding heat one cannot get work in a continuous cyclic process. All 

the heats cannot be converted into work in a continuous cyclic process. What is the next one? 

[Conversation between student and professor - Not audible (00:41:28)] 

Reversible adiabatic process of compression. Therefore, we see that Carnot’s engine comprises 4 

reversible processes. It is a reversible engine; one is reversible isothermal process of heat 

addition, reversible adiabatic process of expansion, reversible isothermal process of heat 

rejection and reversible adiabatic process of compression (Refer Slide Time: 42:02 min). 



Expansion means, where pressure is reduced volume is increased, compression means, where 

pressure is increased and volume is reduced. So, 4 processes  

(Refer Slide Time: 42:19)  

 

Now, this is conceived in practice like this (Refer Slide Time: 42;19 min). Let us consider stages 

like that, a piston and cylinder which is easy to conceive in practice which contains a gas inside 

it at a temperature T1 and a pressure Pa Va which refers to a state a. Temperature T1, I have not 

given the suffix a deliberately T1 Pa Va these are the properties there may other many properties 

you know number of independent properties are fixed other properties will be fixed. P, V, T are 

three fundamental properties always. That is why, people represent with these three properties. 

These are the three fundamental measurable properties at a state ‘a’. 

What we do at this stage? We take a body or external heat source whose temperature is, it should 

be theoretically T1 for a reversible heat addition. First process is isothermal reversible heat 

addition, but it cannot be made. We take a very small dT1, where dT1 tending to 0. 

What we do? We insulate the entire lateral surface of the piston and we just make it close contact 

through a diathermic wall with its (( )) (00:43:34) external heat source. So that, some amount of 

heat, let Q1 flow to it. Now, thing is that, if we want to make an isothermal heat addition 

whenever heat will be added the temperature will go on increasing. To make this temperature T1 

constant, an infinite small temperature difference always exists for a reversible heat transfer; we 

have to slowly push the piston so that the gas expands. That means, as if heat is added 

temperature is going to rise, and at the same time, if we expand the gas slowly, the temperature 



will fall. That means it can make an adjustment of constant temperature process. Afterwards, we 

will see for an ideal gas internal energy is the function of temperature. That means the amount of 

heat added is coming out as the amount of work done, so that the change in internal energy 

remains same and the temperature remains same. But at this movement, I think it is not proper to 

say that because we are not sure that when that internal energy will remain same, temperature 

will remain same or not. 

But you can say that, if you expand the gas in an adjusted manner you can make it possible an 

isothermal process of heat addition. So that a stage ‘b’ comes where the piston moves a little 

distance in this side (Refer Slide Time: 44:48 min) and some amount of heat by that time is 

added to this at a constant temperature T1. This is the process a to b. Therefore what happens at 

this stage b here, the gas is at a T1. Now I disconnect this heat source and at different pressure Pb 

and Vb, because the gas has expanded, but during this time some amount of heat has been added. 

This is the state b, at this position the gas is at state b (Refer Slide Time: 45:21 min). I have not 

written that. This is the process a to b where the heat has been transferred. During this process 

isothermal heat addition, Q1 has taken place. That means in this process, I should have drawn 

this also, the body is there at T1 plus dT1. 

At this movement what we do? We remove the isothermal heat addition and we insulate the 

entire lateral surface of the piston as if it was there insulation (Refer Slide Time: 45:46 min). 

That means what we do? We additionally insulate this front portion, the head of the cylinder. 

That means, the total cylinder is insulated and we make the piston also insulated. Then we allow 

the piston to expand the large expansion process. In this way, the piston expands and comes 

through a stage c, for example; here this is the stage c. When it comes here, the gas is at a 

different volume and pressure which is Pc and Vc which has not been shown here. Then what 

happens? This insulation is okay then the piston is again brought in contact to a another body or 

thermal reservoirs whose temperature is little less than the T2, T2 is the temperature at the state c 

whose temperature is little. So that, some heat is, dT2 tending to 0. At the same time, for a heat 

rejection process to be isothermal we will have to slowly move the piston this side, towards the 

thermal reservoir, so the gas inside is compressed, so that if any cooling effect due to this 

rejection of Vd is being counter way and the temperature is maintained constant. So the piston is 

moved slowly to some distance here. This is the end of this process  c-dwhere the piston is at 

point d, then this temperature remains T let T2, then what we do? 



We just insulate the entire cylinder and remove this reservoir and again compress the gas to its 

initial state where it was (Refer Slide Time: 47:43 min), so the last state and the initial state is 

same that means the last state is T1, Pa, Va, this is all insulated condition. Now, this case piston is 

also insulated, this is all insulated condition. Piston is insulated from the beginning. Only from 

one side the heat addition or heat rejection was taking place. If we draw this diagram in a cyclic 

in a thermodynamic coordinate diagram, the cyclic process, let us consider p as the ordinate and 

V, we see then it will be easier to understand. In the first process, a to b the system was at some 

state a here. This, the situation I have explained just now, is an isothermal heat addition process. 

That means heat is added while temperature remains constant and to maintain so, the piston has 

to move outward little bit. That means gas has to expand little bit to counter way the heating 

effect of the gas. So, we can qualitatively draw this curve like this (Refer Slide Time: 48:50 

min), there is a little expansion that is ‘b’ is like this. This is the condition, this is the b that 

means this is a, where a is pa Va coordinate and this is b where the coordinate is (Pb Vb), where Pb  

is less than pa and Vb is more than Va. Then there is a reversible adiabatic, now, what is 

reversible adiabatic expansion? 

That is the piston has to move very slowly. Here, the heat transfer process is also extremely slow 

because (Refer Slide Time: 49:22 min) the temperature gradient is infinite small dT1 tending to 0. 

When you stop this, make the entire system insulated or adiabatic, then piston has to move very 

slowly outwards for the expansion process because, why it is slow, to get rid of the mechanical 

friction as the mechanical dissipative effect, there is no heat transfer, there is no thermal 

dissipation, or thermal irreversibility. It is free from irreversibility. That means very slow and 

quasi equilibrium movement as we have given the example the piston moves as if there are 

number of weights there and if we slowly remove the weights in small amount, in that case what 

will happen? The piston will slowly move, very gradually, so that each and every intermediate 

steps can be conceived of a equilibrium state, the quasi equilibrium expansion. 

This can be represented by a steeper graph (Refer Slide Time: 50:14 min). Here c, we do not 

know the exact state, we can only show the qualitative drain, because until and unless we know 

the equation between P and V which we can only know if we know the property relations of the 

gas. Otherwise, we cannot find it only qualitatively we can show. This is the process c. Then at c, 

what will happen? Again, there will be a heat rejection at constant temperature. To do that, 

piston has to move outward that means compress the gas to counter way any cooling effect of the 



gas to maintain an isothermal process of heat rejection. This is a similar compression process 

which ends at d. Here, at d, the coordinate is pc Vc, here, at c, the coordinate is Pd Vd, that means 

this is the stage here when it comes from c to d here then from d to a again, a reversible adiabatic 

compression (Refer Slide Time: 51:09 min). This abcd represents this reversible cycle known as 

Carnot’s cycle in the PV diagram, which consists of two isothermal processes. This, a to b, is the 

isothermal process where the temperature remains T1, this, c to d, is the isothermal process where 

the temperature remains T2. That means temperature at a and temperature at b is same and equals 

to T1. Temperature at c and temperature at d are same and equals to T2. 

What is the interesting thing is that? Here, these two processes there is no heat interaction, heat is 

only coming in this process, a to b, by an amount Q1 (Refer Slide Time: 51:45 min) and heat is 

being rejected in this process, c to d, by an amount Q2. These two are the reversible isothermal 

process and there is no heat interaction Q is 0. That means these two processes are reversible 

adiabatic process. One is an expansion process bc another is a compression process and these 

two process are reversible isothermal process (Refer Slide Time: 52:24 min). In this way one can 

conceive of a reversible engine which was conceived first by Carnot’s and it is known as 

Carnot’s engines which consist of two isothermal reversible isothermal processes, one of heat 

addition another of heat rejection and two reversible adiabatic processes. Here also, eta is equal 

to 1 minus Q2 by Q1 and that is equal to 1 minus T1 by T2 as we know the ratio is like this. 

(Refer Slide Time: 53:08)  

 



Now, I will come to the very important concept of entropy, birth of entropy. Rather I will write 

like that. How do you get it? Now we know that if there are 2 reservoirs at an absolute 

temperature T1, and another at an absolute temperature T2 and if a reversible heat engine operates 

between these two temperatures taking heat Q1 and heat Q2.,what we know? We know that, in a 

cycle, cyclic representation Q1 by Q2 is equal to T1 by T2. 

I will start with a very simple thing. Q1 by Q2 is equal to T1 by T2. This we know because this is 

the definition of absolute thermodynamic scale of temperature. We can write this Q1 by T1 minus 

Q2 by T2 is 0. Then we can write Q1 by T1 plus (minus Q2) byT2 is 0. Why is this way? Because, 

Q2 is the heat rejection of which the conventional sign is negative. If we take heat addition as a 

positive, one as a positive another as a negative. Otherwise, how I will signify or imply the sign 

conventions. So convention is that, this Q1 is positive this Q2 is negative. This can be written as 

sigma of quantity by T over a cycle is 0 which can be written in this form. This is the cyclic 

integral (Refer Slide Time; 54:47 min), always we have done this earlier. The cyclic integral of 

dQ by T is equal to0. A very simple case where I consider a constant temperature thermal 

reservoir T1 for heat addition, a constant temperature thermal reservoir T2 for heat rejection and 

from very simple case I can immediately conclude that cyclic integral dQ by T is equal to0. This 

is nothing, but the definition of absolute scale of thermodynamic temperature, or absolute 

thermodynamic scale of temperature. So, cyclic integral dQ by T is equal to0. 

(Refer Slide Time: 55:25)  

 



Now henceforth, we will have to remember one thing that if cyclic integral of any parameter is 0, 

here the parameter is dQ by T, if cyclic integral of any, but this cyclic integral, look, this is for a 

reversible engine, so we will have to give a R (Refer Slide Time: 55:38 min). This represents a 

reversible engine dQR that means cyclic integral dQR by T. Many book gives this R here (Refer 

Slide Time: 55:54 min) to represent this cyclic integral of dQ by T in a reversible cycle because, 

this Q1 by Q2 is equal to T1 by T2 is only valid for irreversible cycle. This equation I cannot use 

for any other cycle. Therefore, dQR by T, this quantity I prefer to give it here because, why I am 

telling, because I will be proving in a different way immediately, because today we do not have 

to prove in a very tortuous manner. 

So, you know whenever we have cyclic integral of any parameter is 0, we can express that 

parameter as a differential of a point function. Why? Because cyclic integral of a point function 

is a 0, so that if I define a point function S, so that the differential of this point function, dS is 

dQR by T. Cyclic integral of any parameter is 0 means that parameter represents the differential 

of a point function, because differential of a point function is always 0. Cyclic integral of a 

differential of a point function is 0. Therefore, if I represent this dQR by T parameter as a 

differential of a point function S, then I can write dS is dQR by T by this analogy. Because, since 

cyclic integral of this dQR by T is 0. I know cyclic integral of any point function, differential of 

point function, dS is also 0. So, I can write this, so that point function can be written in this term 

so that differential of this point function, dS is equal to dQR by T, equals to the  cyclic integral of 

dQR by T. This is the definition of the entropy.  

If we integrate this in a finite change of S point function or this change in point function between 

two steps will be 1 to 2 (Refer Slide Time: 57:42 min). I will not speak of entropy, I will tell a 

point function S, so that it’s differential equal to dQR by T where dQR is what? dQR is not a 

differentiable quantity. It is an infinite small amount of heat addition to a reversible engine and if 

we divide it by T, it becomes a differential way which means mathematically 1 by T is acting as 

an integrating factor. 

[Conversion between student and professor - Not audible ((58:05 min))]  

As an integrating factor. That means 1 by T into dQR becomes d?S that is a point function. If we 

express the finite change in this point function, we will integrate this side, simply school level 

mathematic. If I want to express this point function as a difference between the two specified 

states 2,1. I will write the same thing with the limit1,2. This point function S is now I declare as 



entropy in my list of properties (Refer Slide Time: 58:37 min). Because any point function is a 

property which is a state variable of a system. This way, the birth of entropy comes into picture. 

So, therefore the change of entropy is the quantity dQR by T in a reversible process, because all 

are valid for a reversible process. So therefore, this is the basic definition of entropy. 

Well, any problem? No problem. So, I think time is almost over so that I must stop it here. 

(Refer Slide Time: 59:16)  
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