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Last three lectures, we have been discussing about modal analysis of continuous  

systems. Now, we have solved the problem of modal analysis, which is nothing but 

solving an Eigen value problem, as we have seen analytically, which means that we are 

exactly solving the natural frequencies, and the modes of vibration, which are 

characterized by the Eigen functions. Now, doing an analytical solution is always 

preferable, because you can find out the effects of various parameters in the system on 

the modes of vibration and the modal frequency etc. So, analytical solution is always 

preferable. However, we have seen that even in very simple systems, the solution of the 

modal analysis problem requires solving transcendental equations, possibly which are, 

which might be quite cumbersome even numerically. 

So, in general, analytical solutions though preferable are sometimes cumbersome and 

computation intensive. So, it is of interest to know if numerical methods of modal 

analysis or approximate methods of modal analysis are possible. So, in this lecture and 

the next lecture, we are going to look at, few techniques for solving the modal analysis 

problem or the Eigen value problem approximately numerically.  
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So, what is our motivation for studying the approximate solutions those. So, the first 

motivation is that the analytical solutions may be cumbersome. The other thing is an 

approximate method can provide a quick solution to the modal analysis problem, which 

may be sufficiently accurate for our purposes. 
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So, let us look at the methods that are available to us for approximate modal analysis. So, 

we are going to discuss in this course two methods and two broad methods, which are the 

energy based methods, which will be the topic of discussion in today’s lecture; and in the 



next lecture, we are going to look at projection methods. So, as the name suggests, this 

energy based methods will use the kinetic and potential energy of the system to 

determine the modes of vibration or the natural frequencies; while the projection 

methods as we will see very soon, they use the governing equation of motion, directly to 

solve the modal analysis problem. 
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So, the first method that we are going to look at is the Rayleigh method. So, this 

Rayleigh method is typically used to determine the fundamental frequency of a 

continuous system, and this method is used for conservative systems. So, we use 

Rayleigh method for conservative systems. 
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So, how does this method work? So, let us understand this with the example of a bar. So, 

let us consider a tapered bar in axial vibration. So, we write the kinetic energy as one half 

the density of the material times the area of cross-section times an elemental length times 

the velocity’s square; now this integrated over the domain of the bar. The potential 

energy is one half the Young’s modulus times the spatial derivative of the field 

variable’s square dx and integrated over the domain of the bar. Now this system, this bar 

in axial vibration, as we know, is a conservative system, which means the total energy of 

this bar is constant. So, the total mechanical energy… this is a constant. Now, let us 

suppose that this system is vibrating in one of its modes. So, as we have already 

discussed that when a system is vibrating in one of its modes, the field variable can be 

written as a separable function of space and time in this form. So, this special solution 

form is valid for a system, for this bar, vibrating in one of its mode. Now we will 

substitute this expression in the total energy of the bar, and once we do that what we 

obtain… So, this is the expression of total energy after we substitute the solution 

structure in the total energy expression. Now, if this total mechanical energy is to be 

constant then what it would require is that it should be independent of time; and this is 

possible only when the coefficient of sine square omega t and cos square omega t is 

same, which means the energy is constant would imply these two, the coefficients of sine 

square omega t and cos square omega t, they must be equal. So, therefore we obtain this 

ratio which is defined as the Rayleigh quotient; and this Rayleigh quotient is the key 

concept in Rayleigh method. So what we have done is, we have considered the modal 



solution, substitute it in the total energy expression, total mechanical energy expression; 

and finally, we force the energy to be independent of time by matching the two 

coefficients of the sine square omega t and cos square omega t terms, to obtain omega 

square as a ratio which is known as the Rayleigh quotient. Now, sometimes this Rayleigh 

quotient is expressed as ratio of the maximum potential energy divided by the maximum 

kinetic energy. So, the amplitude, the maximum potential energy would be the amplitude 

of the cos square omega t term, whereas the maximum kinetic energy would be the 

amplitude of the sine square omega t term; and of course this omega is solved in terms of 

this. 
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So, this is one; so, from here, we solve for omega square as we have done here. Now 

this, in this Rayleigh quotient, if you know the exact Eigen function; so, if you substitute, 

where I am using this exact super script to indicate that u exact is the exact Eigen 

function for a particular mode; in that case, if you put this in the Rayleigh quotient, what 

we will get is the exact circular Eigen frequency corresponding to that mode. But the 

problem comes, because we do not know the exact Eigen function. So, in that case, how 

do we use this Rayleigh quotient? So, usually, what is done is, we try to minimize this 

Rayleigh quotient, so, and by minimizing the Rayleigh quotient, we obtain the 

fundamental frequency. 



So the fundamental frequency’s square is obtained by minimizin the Rayleigh quotient 

over a space of possible Eigen functions U of x. Now there is a restriction on how you 

can choose U of x in this minimization problem. The restriction is, U must be a member 

of the set of what are known as admissible functions. So this u is a set of admissible 

function. So, you must choose the possible Eigen function from the set of admissible 

functions. So, what are admissible functions? This we will come to very soon. So ,let me 

write for this problem. 

So, the fundamental frequency square is minimization over the set of Admissible 

functions of the Rayleigh quotient. Now, we come to these admissible functions. So, 

what are Admissible functions? These are functions, which satisfy the following two 

properties; the first property is, it is differentiable at least… So, these functions are 

differentiable at least upto the highest order of spatial derivative in the energy 

expression. Of course these functions are special functions; so they must be 

differentiable at least upto the highest order of the spatial derivative in the energy 

expression. So, in this example we are considering, the highest order of space derivative 

is one. So the set of admissible function should be differentiable up to first order.  The 

second important property that it should satisfy is that it should satisfy all the geometric 

boundary conditions of the problem. So, admissible functions must satisfy all the 

geometric or essential boundary conditions of the problem. So, they satisfy all the 

geometric or essential boundary conditions of the problem. So, these two properties, the 

functions that satisfy these two properties are known as admissible functions. Now such 

functions can be constructed using polynomials, trigonometric functions, and other such 

elementary functions. 



(Refer Slide Time: 26:26) 

 

Now let us, look at this example of the tapered bar. So, as you can see, it is fixed at x is 

equal to zero and it is free at x is equal to l. So, the geometric or essential boundary 

condition is on the left boundary, where the bar is fixed. So, we must choose functions, 

Admissible functions, which satisfy the boundary condition at the left.  
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So, let us look at such functions. So, we must have... So, we have to choose Admissible 

functions for this problem such that it is zero at x equal to zero. This is the minimum 

condition that is required. So, the possible choice, you may write it like this x over l. But 



we can have a class of these functions, by raising it to a power alpha. So, we actually 

have functions, which depending on alpha, for example if alpha is 1 then this is linear, 

for other powers, it can go like this or it can go like this. Now, so, this alpha we will 

initially, keep it arbitrary, and we are going to substitute this in the Rayleigh quotient, 

and we are going to look at, what is the Rayleigh quotient with this expression of 

admissible function. Now one thing that you can see that we now have not one function, 

but we have a class of functions; and we can adjust alpha and see, which function 

minimizes the Rayleigh quotients? So, this alpha provides as with a handle to solve a 

minimization problem as we formulated. So, if you calculate the Rayleigh quotient with 

this admissible function, then the Rayleigh quotient finally turns out to be function of 

alpha, which is unknown as yet and this expression turns out to be, this can be solve very 

easily and what we obtain is this expression of the Rayleigh quotient. Now, so this term 

has the properties of the bar, the geometric as well as the material properties of the bar, 

while this coefficient, which is a function of alpha, determines the Rayleigh quotient. 

Now this alpha is unknown as yet. So we can put various values of alpha or we can 

minimize the Rayleigh quotient with respect to alpha and determine alpha. Let us see 

what happens with alpha is one and this, remember, this is omega square. So this turns 

out to be 70 over 16. So this is an estimate of omega, the first fundamental circular 

frequency and this turns out to be… Now let us see what happens if we minimize with 

respect to alpha, which means… So if you do this minimization, this gives… and 

corresponding to this…  So, you see that this value is lower than this. So, this is a better 

estimate of the circular natural frequency. Now we have solved this problem of the 

tapered bar, in a previous lecture analytically and the exact circular natural frequency 

that we determine was this. So, this is still lower, as you can see that this is higher than 

the exact. But they are quite close. This is within three percent of the exact. So we have 

fairly accurately estimated the fundamental natural frequency of a tapered bar using a 

very simple method. But this, of course, this gives the best estimate based on the form of 

structure of the admissible function that we have chosen. But remember that when we go 

on to calculate stress, since this alpha is less than one for our best estimate, the stress that 

we will calculate at x equals to zero will be infinity. So, it will have some, I mean, it will 

give some unrealistic estimates of stress in bar. However, the frequency estimate is fairly 

accurate. Now here using Rayleigh method we have estimated the fundamental 

frequency. Can we now go on to find out the higher frequencies? Now, that is possible 

by using what is known as the Rayleigh-Ritz method. 
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So, what we additionally have in this method is the Ritz expansion. So, we make use of 

the Ritz expansion of the amplitude functions in the Rayleigh quotient. So, what I mean, 

so if you see this Rayleigh quotient, let us say for our problem of the tapered bar, so, we 

will minimize this… and U has to be chosen from the set of Admissible functions. Now, 

this U, the amplitude function, we will expand and put this tilde symbol to distinguish 

this function from the basis function that we are using. So, like in the previous example 

of Rayleigh’s method, we have kept an unknown parameter alpha; here we will expand 

the amplitude function in terms of admissible basis functions and certain unknown 

coefficients alpha. So, this is a linear combination of these basis functions, admissible 

functions. So these are all admissible function; and we can take any number of terms. 

Now, when we substitute this kind of an expansion, the Rayleigh quotient can be written 

as, so this I can write as a vector multiplication. So, alpha is a column vector and U is 

also a column vector. So, the dot product will represent this scalar function U tilde. 

When I substitute this expression in the Rayleigh quotient, I can write in this form where 

K, the matrix K, so, the ij
th

 element is expressed this form and similarly, for the ij
th

 the 

element of this matrix M is expression in this form. Now we this, remember this alpha, 

this alpha vector is unknown. So, we have to minimize with respect to this vector alpha. 
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So, which implies that, now this Rayleigh quotient is function of this vector alpha, and 

this must be put to zero. So, the derivative must vanish for extremization. Now this 

derivative implies that this derivative has to be taken with each element of this vector 

alpha. So, we have, if there are capital N elements in this vector alpha, then there will be 

N equations N unknowns. So, if you consider this expression of the Rayleigh quotient, 

and if you perform this derivative, which is straight forward; finally what we will arrive 

at… Now here how will omega enter? We have used this expression here. So, if we 

perform the derivative, this coefficient actually turns out to be this ratio, which I am 

replacing by omega square. Now this is a discrete Eigen value problem, which can be 

solved very easily to determine omega and this vector alpha, the Eigen vectors alpha and 

finally once we have the circular Eigen frequencies and the corresponding vectors alpha 

i, these can be used to determine the corresponding Eigen functions using those basis 

function vectors U. So using Rayleigh-Ritz method, we can find out not only the 

fundamental but the higher modes of vibration. Now as a thumb rule, if we want, 

because the accuracy of these various modes will be different, so as a rule of thumb if we 

want N modes accurately, we must take 2N terms in the expansion. I mean this is rough 

estimate, I mean, rough estimating how many terms you must have in the expansion; and 

this may or may not work always; but this is the good way to start. So, if you want N 

modes accurately, reasonably accurately, then you must have double number of terms in 

your expansion. 
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Now there exists another method, which is quite powerful in this class of method, which 

is known as the Ritz method. Now in the Ritz method, we use the idea of Ritz expansion 

of the field variable, and substitute this expansion directly in the variational formulation. 

So this method works with a variational formulation of dynamics. So, let us see, once 

again, for the tapered bar, we know that the variational formulation for this tapered bar 

is... Now, here, we use this expansion… again in terms of admissible functions… Now 

once you substitute this in the variational formulation and simplify, we obtain this 

where… where this is integration over the space, as already been performed. So, we 

substitute this here and since these functions, admissible functions are known, these 

bases are known to us, we can perform this spatial integration and obtain this variation of 

this discretized problem. So, here these matrices M and K are given by this expression 

and we know that and this is now the Lagrangian of a discredited system and the 

equation of motion can be immediately written… So, in this Ritz method, we have 

essentially discretized our problem. Now, once we have discretized, we can search for 

solutions, as we do for discrete systems. So, we search for modal solutions of this form 

and we solve the Eigen value problem. So after this, the things are very standard. So, let 

us look at the axial vibration of the tapered bar once again. Here, I have written out the 

admissible functions that we have chosen. So, H of x for j 1 and 2, we have taken two 

functions and discretized with respect to these two functions. The discretized equation of 

motion is shown below. So, once you have the discretized equations of motion then the 

standard procedure follows, which means that, you assume the solution structure as 



shown here, you come to the Eigen value problem and finally the characteristic equation. 

Now, if you solve this characteristic equation, you will obtain the Eigen frequencies of 

the system. Now, by solving this we obtain the circular Eigen frequencies as you can see 

omega 1 superscript R is calculated using the Ritz method and similarly omega 2 

superscript R; and they are compared with the exact circular Eigen frequencies and you 

can see the fundamental, we have taken two terms; the fundamental circular frequency 

matches quiet well with the exact while there is some error in the second circular natural 

frequency. 
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Now, this Ritz method, even Rayleigh’s method have an upper bound property which 

means that the natural frequency calculated from these approximate methods is always 

greater than the exact; which means that this gives an Upper bound, the actual natural 

frequency, the actual natural frequency of the system is lower than what you calculate 

using the using these approximate methods.  
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Now here you can see the Eigen vectors k1 and k2, and the corresponding Eigen 

frequencies that have been determined by using the Ritz method.  
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And once you plot these Eigen functions, so this shows the comparison of the Eigen 

functions calculated by the Ritz method and those obtain from the exact solution that we 

had discussed previously. So, again you can see that the fundamental Eigen frequency 

matches quite well with the exact while, that of the second mode is an error especially at 



x over l equal to 1. Since we are considering only admissible functions with satisfy the 

geometric boundary condition, which is the, at x is equal to zero; while the natural 

boundary condition is not satisfied with two terms; you have to take more and more 

terms, and then there is a convergence to the exact solution. 
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Now we summarize this lecture. So, we have considered approximate modal analysis, 

based on energy methods, which uses admissible functions. We have looked at three 

methods: Rayleigh quotient, Rayleigh Ritz method and Ritz method; and these methods 

have an upper-bound property of the Eigen value estimate; and these methods work for 

conservative systems with potential forces. With that we conclude this lecture. 
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