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Properties of Eigen Value Problem 

 

In the last two lectures, we started discussions on the modal analysis of continuous 

systems. Now, this was the performance of modal analysis was found to be essentially 

solving an Eigen value problem. Now, today we are going to look at some properties of 

this Eigen value problem that comes up while we perform modal analysis of continuous 

systems. 
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So, let us start by re-visiting the modal analysis problem. So, in our last lecture, we had 

discussed the problem of a bar with varying cross section. The equation of motion of the 

system was given by this and the relevant boundary conditions for this problem were 

given by U at zero is equal to zero for all time and on the right boundary we have natural 

boundary condition and in the order to do the modal analysis we were searching for 

solutions of the special form or structure. 



So, the field variable is expressed as a product of an amplitude function which is the 

function of x, and harmonically varying time function. Now, we discuss the properties of 

this solution and we found that the solution is actually separable in space and time. So, 

when we write the actual solution in real form… it appears in this structure. So, it was 

separable in space and time. The other observation is all points, therefore, vibrate at the 

same frequency omega, the same circular frequency omega. Thirdly, all points of the 

system pass through the equilibrium point at the same time instant. The time instant 

when this temporal function is zero, the whole solution is zero, which means the bar is in 

its equilibrium state; so, all points will pass through the equilibrium point at the same 

time. 

Then we observed that phase difference between any two points and the bar is either zero 

or pi. And finally, we observe the existence of modes that means points at which U, the 

amplitude function capital U of x is zero. So, the points, so, the properties of the modal 

solution are known to us. So, once we substitute the solution of this structure in to the 

equation of motion, we obtain the differential equation in terms of this amplitude 

function and the corresponding boundary conditions. This forms the Eigen value 

problem for the system, so, the differential equation along with the boundary conditions. 

Now, we will represent this in a slightly abstract form in this manner… where, our 

equation of motion was, can be written like this… 
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So, if you write a general equation of motion of a string or a bar in this form, then the 

differential equation of the Eigen value problem may be represented in this manner, 

where lambda is omega square. So, this actually is plus. So, this is the differential 

equation and the corresponding differential equation for the Eigen value problem is 

given in this form, where lambda is omega square and this K is the differential operator. 

So, for example, in the case of the tapered bar, mu(x) is rho times the area and the 

differential operator K, which is also known as the stiffness operator, is the spatial 

derivative of this quantity, E A in the derivative of the argument. So, this is the structure 

of the differential equation of our Eigen value problem. Now here, as I mentioned, here 

this is known as the stiffness operator, because this term comes from the potential energy 

in the Lagrangian formulation, while this term mu(x) is the kinetic energy operator, 

because it comes from the kinetic energy in the Lagrangian formulation. 
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So, suppose for two modes j and k we can write this differential equation. So, for the j
th

 

mode let us say, we can write the differential equation of the Eigen value problem like 

this, while for the k
th

 mode, the differential equation becomes this. Now, we are going to, 

the objective of this analysis is to determine certain properties of the Eigen value 

problem. So, let me multiply this first equation with Wk and the second equation with 

Wj, and subtract one from the other, then after some rearrangement, I can write. So, I am 

also integrating over the domain of the system.  



 

So, I multiplied the first equation with Wk and the second equation with Wj subtracted 

one from the other and integrated over the domain of the problem; and this is what I 

obtain upon rearrangement. Now, suppose that this integral vanishes. So, let us consider 

the situation when this property holds where this W and W tilde are functions that satisfy 

the boundary conditions of the problem. If this property holds, then this operator K is 

known as self-adjoint. So, this property is satisfied by the stiffness operator then it is 

known as a self-adjoint operator.  

Now, this self adjointness of an operator is connected to symmetry. So, as you know that 

the stiffness operator has a corresponding matrix, for example, in vibrations of discrete 

systems you come across stiffness matrix. The self adjointness of the stiffness operator is 

nothing but the symmetry of the stiffness matrix, the corresponding stiffness matrix. So, 

what are the consequences of this symmetry? As we know that when matrices are 

symmetric, the Eigen values are real and the Eigen functions are also real, and the Eigen 

vectors are orthogonal. So, in a similar manner, we have these properties which can be 

shown very easily that the Eigen values are real, Eigen values and Eigen functions are 

real, whenever the stiffness operator is self-adjoint. Secondly, the Eigen functions are 

orthogonal with respect to an inner product that we will find out in the course of this 

lecture.  
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So, we are, we will be now discussing this orthogonality property. So, re-call that we 

have this equation. So, if the operator K is self-adjoint then this term vanishes. So, this 

implies this integral must vanish, whenever j is not equal to k. So, which means if I take 

two distinct amplitude functions modes, Eigen functions Wj and Wk, then this satisfy this 

property that this integral must vanish; and this, we define as the inner product of these 

two Eigen functions. And in a compact form, we will write this, the inner product of two 

Eigen functions can be written in this form where alpha j is given by this integral. 

Now, one may normalize this property by appropriately scaling the Eigen functions, 

because as we know that, any scaled form of this Eigen function is also an Eigen 

function. So, we can scale appropriately, to have ortho-normality of the Eigen functions 

with respect to this inner product that we have defined. So, here this Wj hat is Wj over 

square root of alpha j. So, here we have orthogonality with respect to the inertia operator. 

So, if you consider that this mu of x represents the inertia operator, then this 

orthogonality is with respect to the inertia operator and correspondingly we have we can 

write… So, for the j
th

 mode, this is the differential equation. So, if I multiply this 

equation with… So, this can be written also for the hat Eigen function, the normalized 

Eigen function and if I multiply this with Wk hat and integrate… So, this shows that the 

Eigen functions are orthogonal also with respect to the stiffness operator K. Now, what 

is, what are the implications of this, so, what are what is the physical implication of this 

orthogonality with respect to the inertia and the stiffness operators. So, the implication is 

that, there is no exchange of kinetic or potential energy between the Eigen modes. The 

physical implication is that there is no exchange of kinetic or potential energy between 

the Eigen modes. And this orthogonality property is also very useful as we will see in 

due course for solving initial value problems or other problems related to continuous 

systems. And this orthogonality we have already come across when we discussed about 

vibrations of modal analysis of strings. 
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Next, we discuss some examples and we will determine the orthogonality relations for 

these examples. So, we once again go back to this bar of varying cross-section and 

follow the steps that we have done in detail. So, our Eigen value problem… Now, let us 

check that this stiffness operator, that we have here, is really self-adjoint. So, what we 

have to show… So, this we have to show. So, you have to show that these two are equal 

where Uk and Uj are two Eigen functions of this Eigen value problem. So, we start 

integrating by parts, let see from the left hand side. So, we take this as the first function 

and this as the second function. This is what we obtain. And here I will integrate by parts 

this term once again and here I will use the boundary conditions. So, the boundary terms 

here that I have, so, this term will be evaluated at l and at 0. Now, at l U prime at l must 

be 0. So, this term must vanish at l and U(0) is 0. So, Uk at 0 must be 0 becomes these 

are Eigen functions and satisfy the boundary conditions of the Eigen value problems. So, 

this term is actually zero. So, we are left with only this term and this I will integrate by 

parts once again.  

Now, the same reasoning as we had here. This term, this boundary terms must also 

varnish. So, we are left with which is nothing but the right hand side of this equation. So, 

we have shown that this operator acting on… So, we have shown this self adjointness of 

the stiffness operator of that equal to bar. So, we can write this orthogonality in terms of 

the inner product as we were defining for the tapered bar. 
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Next, we are going to look at the hanging string or hanging chain. So, for the hanging 

chain the Eigen value problem write this. So, in this case, the stiffness operator is given 

by this term and in a similar manner you can check that this self adjointness property 

holds for the stiffness operator of a hanging chain. And once you, I mean, used this 

property, you can derive the inner product of the Eigen functions of the hanging chain 

with respect to which the Eigen functions are orthogonal. So, let me just write down this 

Eigen function that we have already derived in a previous lecture. So… So, this is the 

structure of the Eigen functions of a hanging chain and they satisfy the orthogonality 

relation in this form with... So, this is alpha j is the square of the Eigen say that j
th

 Eigen 

function and integrated over 0 to l, and this turns out to be… However, this J1 is the 

Basel function of order 1.  
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Now, let us consider the example of a uniform bar which is coupled to a harmonic 

oscillator, which we have discuss in our previous lecture. So, the Eigen value problem 

for this system was written as… as obtain in our previous lecture. So, once again for 

mode j and mode k, we can… So, this is the two differential equations and this is the 

boundary conditions for the bar. So, for the mode j and k, we can write…  

Now, we will once again multiply this with the first equations for the bar with Uk and the 

second with Uj subtract and integrate over the domain of the bar, and upon 

rearrangement, you can very easily obtain… So, there are few standard steps. So, to 

obtain from here to here, that we can easily perform and come to this condition. Now, if 

you integrate by parts, let say this first term. So, integrate by parts this first term two 

times and used the boundary conditions for the boundary terms that you generate, then 

you can check that the expression reduces … So, we are integrating this term by parts 

two times. So at the end of the integration by parts, this term will be exactly same as this; 

so that two cancel off, but we will generate two boundary terms with single prime and 

that we have to replace that, we have to use this boundary condition. Once you use that 

you ultimately come to this expression. Now when j is not equal to k, and considering 

that omega j is not equal to omega k, there are no repeated Eigen frequencies, then this 

bracketed quantity must vanish; and this if you check, this can be written as… 
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Here I have replaced these quantities by Yj and Yk which we have obtained this 

expression before. So, this is our inner product. Remember that in the case of a discrete, 

of a hybrid system in which we have a continuous and discrete system, we had this Eigen 

function vector which we have discussed in the previous lecture. 

So, here we would say, we will write the inner product in this form, where the inner 

product is now defined in this form. So, you see this is not a trivial or a simple inner 

product that we obtain for other systems. So here we, so, this procedure you have to 

follow in order to determine this structure of the inner products, how this inner product is 

calculated based on the Eigen functions. So, let us summarize what we have studied 

today. So, we had… 



(Refer Slide Time: 52:47) 

 

So, we have revisited this modal analysis problem and the Eigen value problem. Then we 

looked at the properties of the modal solution. Then we discussed about self-adjoint 

operators and the consequences of the stiffness operator being self-adjoint, these are real 

Eigen values and real Eigen functions. Then we have discussed about the orthogonality 

property of Eigen functions and we have determined the inner product. We have outlined 

steps to determine the inner product with respect to which this orthogonality property 

holds and we have looked at the implications of the orthogonality property of the Eigen 

functions. So, if the Eigen functions are orthogonal that implies that there is no exchange 

of energy, kinetic or potential, between the Eigen modes or the Eigen functions. So, with 

that we conclude this lecture. 

 

Ketword: Eigen value problem, self-adjointness, orthogonality of Eigen functions, inner 

product. 


