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So, in the previous lectures, we had been looking at ways of deriving the equation of 

motion of continuous systems. So, we derived equation of motion, the boundary 

conditions; and we also looked at initial conditions which close the system, that means, 

we will then have unique solutions of our system. Now, so this part, we derived these 

equations by two ways; one was the Newtonian approach, the other was the variational 

approach. Now, in the next few lectures, what we are going to do is analyze these 

equations or solve these equations. 

(Refer Slide Time: 01:16) 

 

So, the first thing that we note is that, we have the equation of motion, then we have the 

boundary conditions and we have the initial conditions. So, this is what we have in hand. 

Now, what can we do with these? So, in the general situation, what we can do is given 

these three things, we can solve the system. We can find out the solution; we can find out 

the behavior of the system. But, then with change in initial conditions for example, the 



solution will change. Now, if the solution changes, then we are not able to get a feel of 

the system. So, the question that we put is whether we can find out some characteristic 

solution of the system, so what we are interested in is finding out certain characteristic 

solutions of the system. By characteristic solutions, I mean that things that will not 

change, a solution will not change that those things will not change with change in initial 

conditions or certain properties of the system that will not change with change in initial 

conditions. 

So can we find such characteristic solutions? So, the answer to this question is an 

affirmative and we know this from our study of vibrations of discrete systems. So, in 

there, we solve for what are known as the natural frequencies of the system. Natural 

frequencies, so, how fast the system is going to vibrate; so, that is, I mean an idea of that 

is given by the natural frequencies of the system. By natural, we mean that the system is 

in free motion. It is not being forced or disturbed from outside as such. The other is, how, 

the mode of vibration. So, one thing is the natural frequencies and the corresponding 

modes of vibration of the system. 

So, these two constitute the characteristics solutions of the system and finding them out 

is known as modal analysis. So, when we do modal analysis, what we are doing is 

actually searching for solutions of very special form. So, if you recall the equation of 

motion of a string, so, suppose its fixed-fixed string of length l. So, we have the equation 

of motion and the boundary conditions. Now, our field variable is this, w(x,t). Now, this 

is the general function of the spatial coordinate x and the temporal coordinate t. Now, 

when we do modal analysis, we are searching for solutions which are of very special 

form, which look like this; where this i is the square root of minus 1, omega is known as 

the circular frequency, and W is the amplitude function.  

So, we are searching for solutions of this very special structure, in which, in a certain 

way, the special function and the temporal function are somewhat separated. Now, they 

look separated, but, remember that we have introduced. So, now, the solution is in the 

complex form. So, this w may, in general, be a complex function. In that case, the 

solution is not strictly separated or separated in space and time, but, we will encounter 

such solutions later in this course. So, for the time being, we introduce this complex 

solution, complex solution structure and we say that the actual solution, because our 

equation and the boundary conditions are all real, so, the actual solution is obtained by 



taking either the real part, so, the actual solution will be obtained by taking either the real 

part of this quantity or the imaginary part of this quantity or a linear combination of the 

real and imaginary parts. 

So, if you consider this possibility and we will initially, most of the systems that we are 

going to study will have this capital W, the amplitude function as real, in that case we 

can rewrite this solution in the form. So, if you consider that W is a real function and as I 

mentioned, that you can take the linear combination of the real and imaginary parts of 

this complex solution form as the general solution. 

Then your solution looks like this. Now, from this structure, we can deduce immediately 

a few properties of this solution. So, here you can immediately see that the solution is 

strictly separable in space and time. So, space part and the time part, they are separated. 

Then, this, the temporal part of the solution can become zero at a certain time instant. In 

that event, all points for all x, the solution is zero, which means, that the motion of the 

string or the continuous system passes through the equilibrium point; all points pass 

through the equilibrium point at the same time. So, the system passes through the 

equilibrium point, so, all points of the system pass through the equilibrium point at the 

same time instant. Then, there are points, there can be points at which w(x) is zero; such 

points are called nodes. 

So, there is the possibility of existence of nodes, where w(x) is zero. The fourth property 

of this solution structure is that, the phase difference between any two points of the 

system is either zero or pi. So, if you take any two points, x1 and x2 and if you observe 

the product of this amplitude function, if this is positive, then the phase difference is 

zero. If it is negative, the phase difference is pi. There is another interesting property of 

the solution that is, the ratio of amplitudes at x1 and x2, that is, independent of time; that 

is, to say this ratio, so, essentially, this is independent of time as we can see. So, we will 

start with this structure of the solution and see or try to find out the characteristic motion 

of the system. 
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So, to do this we will start with the example of the uniform taut string. So, the equation 

of motion and the boundary conditions look like this. Now, we are going to substitute 

this solution structure; and if you do that and with a little rearrangement, you can easily 

see the equation reduces to this, because exponential i omega t will never be zero for any 

time. So, the remaining part, the coefficient of exponential i omega t, which is this, must 

be 0 and along with this, we must have the conditions at x equal to 0 and x equal to l. 

Now, this differential equation is very familiar and the solution can be written directly. 

Now, this is the general form of solution of this differential equation. Along with this, 

now we have these boundary conditions at x equal to 0 and x equal to l. So, we will 

substitute these in the boundary, this solution form in the boundary conditions and we 

can rewrite the boundary conditions in this form. Now, if you want to have non-trivial 

solutions of D and H, which is what we desire, then the determinant of this matrix must 

vanish. 

So, that implies, so, determinant of this is nothing, but, sine(omega l/c) and that must be 

zero. This equation is known as the characteristic equation because it yields, this 

condition yields certain characteristic solutions or properties of the system and they are 

the circular frequencies, which are also known as the natural frequencies, circular natural 

frequencies of the system. So, from this condition, we can immediately write that omega, 

now there are discrete solutions of this characteristic equation, but, there are infinitely 

many of them. So, there are countable infinite many points at which this will be satisfied 



for special values of omega. So, we will put an index n and write this as, where n, this 

index n goes from 1 to infinity. 

So...So, there are countably infinitely many natural frequencies of a string, of a fixed-

fixed string, which are given by these values. They are called the circular natural 

frequency; also sometimes known as the characteristic frequencies of the system.  
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Now, once we find these special values of omega in this matrix for which we have non-

trivial solutions, then we can really find those non trivial solution by finding the 

corresponding D and H values, which look like, so, if you substitute these values of 

omega n into the boundary conditions, now it can be easily seen that the solutions are or 

can be written in this form. So, anything proportional to this will be a solution, where 

again n goes from… So, corresponding to each circular natural frequency, you have this 

vector which gives you the actual solution which is obtained as these are called the 

modes of vibration or they are actually the Eigen functions. Again, they are, they 

correspond to the natural frequencies of the system. So, for every natural frequency, 

there is an Eigen function which defines or describes a mode of vibration. So, the total 

solution now looks like… So, everywhere we have this index n. So, here also I must 

have this index n. So, this is the solution. For each n, I can have a solution and since our 

system is linear, a super position or a summation of this solution is also a solution. So, I 



can finally, sum all these solutions and construct the most general solution of a vibrating 

string with fix support. 

Now, this structure looks very familiar, if you think of the Fourier sine series. So, this 

represents a function, which is periodic and so, the periodicity is l. So, l is the, where l 

here refers to the length of the string. So, this structure of the solution, finally what we 

have is like a Fourier sine series. So, which means that any shape of the string, since we 

know from Fourier series theory, that any shape between two supports, if I have this 

shape, by continuation I can construct the Fourier or represent this as a Fourier series 

,Fourier sine series like this. So, any shape of the string is now, at any time instant, if you 

think about the shape of the string at any time instant, then this is a constant, which is 

represented here as a n and I mean this is expanded in terms of this function sine n pi x/l. 

Now, we also know from Fourier series theory, that these form the basis functions which 

are orthogonal in the sense that… So, if you integrate, perform this integration, so, if you 

take any two Eigen functions with different index n and m, multiply them and integrate 

from 0 to l, the length of the string, then it is l over 2 the Kronecker delta m n. So, which 

means, if m is not equal to n, this is zero. If m equal to n, this is l by 2. So, these are 

orthogonal. So, sine(pi x/l) is orthogonal to sine(2 pi x/l), etc. So, if I make a graphical 

representation of this solution, I can think about it with the slight stretch of imagination. 

Suppose, I draw axis which are orthogonal to represent this orthogonality conditions and 

I call it sine(pi x/l), call this axis as sine(2 pi x/l), etc. I cannot draw all these infinitely 

many axes, but, I appeal to your imagination that you can consider this to be an infinite 

dimensional space, where axes are orthogonal to a represent the orthogonality of these 

functions. Then a solution of this form or a representation in this form for particular 

shape of the string, is actually a point in this infinite dimensional space. This is a1, this is 

a2, this is a3 and like this you can have all these coefficients a1, a2, a3, a4 up to a 

infinity. So, in this space, the configuration of the string at a time, at time instant, at a 

particular time instant, is nothing but a point in this infinite dimensional space. So, as the 

string moves, so, is nothing but the motion of this point. So, if the string executes a 

periodic motion in this space, then should be a perfectly a closed curve. Now, in this 

space, then, what is the simplest motion that is possible? So, simplest motion would be 

for example, the string moving only along this axis, only along this axis. This is a modal 

solution, the motion of the string in the first mode of vibration. 



So, this motion is nothing but only sine(pi x/l), is represented by sine(pi x/l). All the 

other coefficients are 0, a2, a3 etc. are all zero, except a1. So, this is the first mode of 

vibration of the string which looks like. Similarly, if you consider motion only along the 

second axis sine(pi x/l), then the motion of the string looks like this. So, essentially the 

string is vibrating between these two extreme configurations. The corresponding 

frequencies, corresponding circular natural frequencies are given by these values, 

omega1 as pi C/l and omega2 as 2 pi C/l. This infinite dimensional space is sometimes 

called the modal space or sometimes also can be called the configuration space of the 

string. So, in this space as the configuration of a string at any time instant is represented 

by a point; and it is nothing but, when it moves from one configuration to the other, it is 

nothing but the motion of this point in this space. We have seen that the elemental 

motion or the motion along these axes, they represent the modal solution. 

Now, I am going to demonstrate with the small experiment, these solutions. Before that, 

let me just state, point out here, that as you can see in this solution, there is no node 

within the domain of the string, whereas, here there is one node, where the string remains 

fixed. This point is not moving out from the equilibrium position whereas, other points 

are vibrating. Here, all points are vibrating in the same phase. So, the string essentially 

moves through intermediate configurations like this and then again comes back and 

passes through the equilibrium points. At the equilibrium points, the string again 

becomes straight and then starts moving down and reaches this extreme; again repeats; 

starts afresh. 

Here, the intermediate configurations look like this. So, you see a point here and a point 

here, they are simply out of phase. So, when this is moving up, this is moving down and 

vice versa. So, but two points on this, in this lobe, they are moving in phase. So, either 

the phase is either zero, phase difference between two points of the string is either zero 

or it is pi. So, now I will demonstrate using a small experiment these modes. So, here I 

have a string, which I have made taut by pulling and here this is an exciter which is 

nothing, but a simple electric shaver. Now, as I pluck the string, you see the motion 

seizes after some time. This is expected, since all real systems, they have internal 

damping. But, in our model that we have considered till now, we do not have damping. 

So, to cancel the effect of damping, I must have an exciter, which must pump the same 



amount of energy that is being dissipated, with the due to the internal damping in the 

string. 

Now, let us see. So, this is the first mode of vibration of the string. This is how it will 

look like when it is vibrating in the first mode. Now let me try the second mode. This is 

the second mode of vibration of the string and I may also try the third mode, which may 

not be visible very clearly, because the amplitudes are so small. But, the second mode is 

quiet clear and the first mode as well. So, this is what we have observed. We have seen 

the first two modes quite clearly, third mode, because the amplitudes are so small, has 

been, is less visible and so on for the higher modes. But then, whenever I pluck a string, I 

actually excite a number of these modes. So, the motion of the string, if I pluck a string 

at an arbitrary point, then I am actually exciting a number of these modes. So, the 

solution is more complicated, but, I can, by special means excite only these individual 

modes and we have seen that in a demonstration. 
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Next example, that, we are going to look at is that of a uniform hanging chain. We have 

derived the equation of motion of a uniform hanging chain previously and it looks like… 

So, this is the equation of motion, these are the boundary condition at the fixed end. 

Now, once again, we are going to attempt a solution with this structure… and we 

obtain… with the boundary conditions… 



Now, in the case of a string, of a uniform taut string, we obtained the equation 

previously. After substituting the solution structure, we obtained the differential equation 

and boundary conditions. Here again, we have obtained a differential equation and 

boundary conditions; this problem is known as the Eigen value problem. 

So, in the case of a string, this was our Eigen value problem. Now, this structure of 

equation looks tantalizingly familiar because we have studied equations of this structure, 

when we discussed Sturm-Liouville problems in mathematics. Now, to convert this, 

because this is a particular structure, is very special, we can convert this into more 

familiar, into a familiar more familiar form by using transformation of the independent 

variable x. So, let us consider a variable s which is the function of x. 

If you use this new variable s, then you can replace, which you can check very easily, 

where w tilde is a function of this new variable s. Similarly, you can work out the higher 

derivative.  

(Refer Slide Time: 47:06) 

 

Now, having done this, if you substitute back in the equation and convert this equation in 

terms of s, then what you obtain is… with the boundary conditions… This can be 

checked very easily. Now, this is a very familiar equation, which is the Bessel 

differential equation. So, this equation is the Bessel differential equation and in this 

equation if you put n as 0, then it reduces to this differential equation. 



And, the solution of the Bessel differential equation with n equal to 0, which is the 

solution for our w tilde, where J0 and y0, they are known as the 0
th

 order Bessel function 

of the first and second kind, respectively. Now, if you look at these Bessel functions of 

0
th

 order, then you will find that this second kind has a logarithmic singularity at s equal 

to zero. So, if I make an approximate plot of J0, so at s equal to zero, y is in minus 

infinity. So, this will violate this condition, this boundary condition, which is the 

boundary condition at the free end. So, finiteness of the solution at the free end forces us 

to select E as zero. So, E must be zero. So, therefore, which can be written, so, I can 

write down, write this down in terms of my original variable x. 

But, before I do that, let me look at the boundary conditions. So, we know that, so this 

implies this must be zero. Now, you can see from this figure, there are finite number of 

points, but infinitely many; there are discrete points, but infinitely many, at which this 

function J0 is zero. So, these countably infinitely many solutions of this will give us the 

natural the natural frequency of the system. 
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And, if I represent this by, something like Gamma k, then this Gamma 1 is 

approximately 2.4048, Gamma 2 is 5.5201, Gamma 3 is 8.6537 and like this you can 

find out the values and here from the these values of Gamma k. Therefore, you can find 

out say for example, you can easily write omega1 as 1.2024 under root l over g. So, you 

can see that compared to a mathematical pendulum, this is 1.2 times higher. 
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Now finally, once you have this, you can write the general solution, once again using 

superposition. Where, so these are the, these represents the modes, these are the Eigen 

functions and the modes of vibration of a uniform hanging string are defined by these 

Eigen functions. So, the modes of vibration of hanging string are defined by these Eigen 

functions; and they look, so, this is the first mode, this is the second mode and this 

represents the third mode. Now once again, I will demonstrate to you the modes of 

vibration of a hanging chain.  

So, if you see this chain, so, this is the first mode of vibration. Now, we will try the 

second mode. So, this is the second mode of vibration of the chain. Exciting the higher 

modes is little more difficult. So, in this lecture what we have studied is the modal 

analysis of continuous system. So, we started off with a modal analysis of a taut string 

and then we looked at the properties of this modal solutions and finally, we also looked 

at the example of a uniform hanging chain. So, with this we come to an end of this 

lecture. 
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