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We have been discussing about the vibrations of plates. We have looked at the 

rectangular and the circular plates in our previous lectures. Today, we are going to 

discuss some special problems in vibrations of plates. Before we do that now as, you 

have seen in the previous lectures that even for some simple problems the analytical 

solution becomes very complex and sometimes with increasing complexity of the 

geometry or the boundary conditions etc., the analytical solution becomes intractable. In 

such situations we would like to have approximate methods for discretizing the dynamics 

of plates and performing modal analysis which we obviously, expect them to be 

approximate. But then, we can; there is always a scope of improving the accuracy of 

these methods and we have seen such approximate methods in this course. Today, we are 

going to look at two examples based on which we are going to solve using the 

approximate method. Before we start discussing the examples, let us look at the 

variational formulation of plate dynamics. Till now we have not discussed this 

variational formulation. We have discussed only the Newtonian formulation of plate 

dynamics. Now this variation formulation is little cumbersome for the plates. Let us see 

at least how it is formulated? But then if you go through the variation formulation of 

plate dynamics then you will also see that the boundary conditions are obtained naturally 

in the process. So, you can cross check, that the boundary conditions that we have 

discussed based on the Newtonian formulation and based on Von Karman’s boundary 

condition for free edge; you can obtain them directly from the variation formulation. Let 

us a start with a little bit of discussion on the variation formulation for dynamics of 

plates. 
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So, let us consider a plate. Now, here when we do the variational formulation, we first 

write down the kinetic energy of the plate. So, the kinetic energy of this little element is 

given by one half, if rho is the density then dx dy dz, where z is the coordinate 

perpendicular to the figure that is the plane of the paper; so, this is the mass of this little 

element times its transverse velocity’s square. Now, in addition if you also want to 

consider the rotary inertia then you have in addition to this half rho; now this is the mass 

times z square; so mass times the distance from the neutral plane square; so that will give 

the moment of inertia of this little element at height z from the neutral plane times the 

angular velocity square; now this angular velocity can be written as, in the y it is written 

as del/del t of del w/ del x whole square; so this is the contribution from the rotary inertia 

and if you now integrate this over the complete volume of the plate, then we can obtain 

the total kinetic energy of the plate. Now, since this field variable tracks the transverse 

displacement of the neutral plane, so this is independent of z; and if density is uniform 

etc., with all those nice conditions, there is nothing in the integrant that is function of z. 

So, z can be integrated out and written as… So, this z goes from minus h by two to plus 

h by 2.  So, this z coordinate goes from minus h by two to plus h by two, where h is the 

thickness of the plate. So, then if I perform this integral, I can simplify this expression; 

so now integral over A; that is the kinetic energy. Now, this I, which is the moment of 

inertia per unit area, so that is the moment of inertia per unit area of the plate. Next, we 

will write down the potential energy expression for this little element. Now, we have 

considered that this plate is subjected to in-plane stresses. If you have in-plane stresses 



then the strain energy stored because of deformation is given by half times the stress 

times the strain. Now we have the normal stresses times the strain in the x plus normal 

stress in y times the strain in the y and plus two times the in-plane shear stress and the 

corresponding shear strain of the element; now this is per unit volume. Now, I have to 

again integrate. The thickness goes from minus h by two to h by two; and x, y go over 

the domain of the plate. Now, here finally I obtain this expression in terms of the 

displacement field variable which is w; to do that we first write down the constitutive 

relation which is Hooke’s law. From Hooke’s law, we can write; you have seen this 

before; so, the stress, normal stress in terms of the normal strains in x, similarly in y, and 

the shear stress in terms of the shear strain. 
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 So, if you use these expressions in the potential energy x and of course, we also have to 

write the strain displacement relation which we have also written out before. So, from 

the displacement kinematics… So, we have seen these expressions before. Now, we will 

substitute these strains in terms of the displacement field variable in here. Finally, the 

stress terms will be put here. If you do that and make the final simplification, then upon 

integrating over the thickness direction, this is the expression of the potential energy, the 

strain potential energy, where this D is… here of course E is the Young’s modulus and 

nu is the Poisson’s ratio. Now, with the obtained expressions of kinetic and potential 

energy, we can now write the… use the Hamilton’s principle to derive the equation of 

motion. Hamilton’s principle says that, this variation must vanish. We have these 



expressions of the kinetic and potential energy and if you want to derive the equation of 

motion, then you must follow the procedure that we have discussed in case of other 

structure elements like a strings, membranes etc. This will closely follow that of the 

membrane; only the terms are more complicated or complex here and because of that the 

procedure is straight forward, but cumbersome. So, one can derive the equation of 

motion and the boundary conditions are also obtained along with this. So, that is the 

advantage of using the variation formulation. So, now, using this then we can also use 

the discretization using Ritz. So, based on based on this Hamilton’s principle and Ritz 

expansion; so Ritz method requires, the Ritz expansion plus the Hamilton’s principle; 

these two lead us to the discretization of the dynamics. Let us look at two examples. So, 

the first example that we are going to discuss today is that of a square plate supported on 

a circular boundary. 
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So, let us look at the geometry of the problem. Suppose this is a square plate of uniform 

thickness, which supported on a circular support; it is simply supported. We consider that 

the length is 2l and this is at the geometric centre. Now, we are looking at square plate on 

a circular support. This radius of this support circle is a and the side is 2l. We already 

have the kinetic and potential energy expressions; but I will make some simplifications, 

some non-dimensionalization. This x coordinate is non-dimensionalized with respect to 

the half length of the plate. Similarly the field variable w which tracks the transverse 

displacement of the neutral plane is also non-dimensionalized with l and we define non-



dimensionalized l tilde. Now time is also non-dimensionalized in this form. Now with 

this non-dimensionalization scheme the kinetic energy; we will consider an Euler 

Bernoulli plate, the Kirchhoff plate. So, we will consider a Kirchhoff plate. In the 

Kirchhoff plate we do not consider the rotary inertia terms; the kinetic energy expression 

simplifies. These are all simplifying assumptions. I have dropped the tilde for 

convenience. Here now, x and the y coordinates go from minus 1 to plus 1. Similarly the 

potential energy expression… So that is the potential energy expression for the plate. 

Now, let us look at the support condition. Now in there we will be using the Ritz method. 

The advantage of this method is that you have to generate only admissible functions for 

the problem. Now, we know that when this is simply supported; the only condition at this 

boundary is that the displacement is zero. So, if I parameterize this circle in terms of phi, 

this is the boundary condition. In terms of x, y I can write, I can write in any one of these 

ways. 

(Refer Slide Time: 25:44) 

 

Now we will; what we have to do is we have to write this as an expansion. There will be 

of course two indices in this form. So, we have to write the solution as an expansion in 

terms of some known functions. These are our admissible functions, which need to 

satisfy only the geometric boundary conditions of the problem and this boundary 

condition is geometric boundary condition. We have a geometric boundary condition in 

this problem and of course, there is a natural boundary condition also; but and on this, so, 

here on the edge; these are free edges; we have again natural boundary conditions at the 



free edges. Now what could be a good choice of admissible functions for this problem? 

So, let us see; if you have, suppose you choose W (1, 1) the first term in this expansion 

as this. Now you can see of course, that on this boundary this is going to vanish. So then 

I can generate the expansions here as multiples of or products of this function and other 

monomials, say x power m and y power n. I can a think of this construction; but before 

we do the general situation, let us look at only one term expansion and do the Rayleigh’s, 

determine the Rayleigh quotient. We are going to determine the fundamental frequency 

of the square plate which is supported on this a circular boundary. This non dimensional 

frequency square then turns out to be… So, this is the assumed Eigen function for the 

fundamental mode which we are assuming in this form. So, this is going to be the 

Rayleigh quotient. If you substitute this as the assumed mode shape function in the 

quotient then this happens, turns out to be… if you perform these integrals… I have this 

a as it is. I have not assumed any particular value of a. Now we may then think of for 

example, improving the support; by improving the support I mean that increasing the 

natural frequency of the plate. So if you; so, here of course, this is the non-dimensional 

frequency. The dimensional frequency will be obtained using this expression. Now, if 

you want to improve the support, suppose you want to, suppose you ask the question that 

what should be what should be good radius for support, this circular support so that the 

plate is a well supported. In that case, what we are asking is what radius will have give a 

very high natural frequency? High natural frequency would mean the support is quiet 

stiff. So, what would result in a very high natural frequency? So to do that, you can make 

this stationary with respect to a and that gives a value of optimal radius as square root of 

2 over 3 and corresponding to this the optimal basically, this is maximum you can check 

that by taking the second derivative. This is actually maximized, which can be checked 

by taking the second derivative with respect to a and looking at the sign of the second 

derivative. So, this happens to be the optimal non-dimensional radius. Now, let us go 

back to our Ritz discretization problem and now we can take this optimal radius and 

discretize the problem. 
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So, the expansion that we are using; so these are the coordinates and that multiplied by 

the admissible functions; this is an expansion which we will substitute in the Hamilton’s 

principle. We will calculate the Lagrangian that is obtained as an integral over the area 

which now is actually dx dy. So, we will integrate over x and y to obtain the Lagrangian. 

Now, since we know all these functions and these are polynomials. It is very easy to 

perform these integral. We obtain the Lagrangian. This Lagrangian is a function of these 

coordinates and the derivatives. Once we have that we have actually discretized. So, the 

problem, this Lagrangian will have this structure. The equation of motion will follow… 

So, that is straight forward. So, these are the mass and the stiffness matrices of the 

discrete problem. Now, if you perform this and do the modal analysis of this, then the 

natural frequencies, the first few of them etc.; so, you see these two frequencies are the 

same. So, there is a modal degeneracy. You can check that the Eigen vectors that you 

will get corresponding to these two Eigen frequencies are distinct. You will have, from 

here you can construct back the Eigen functions and these will be orthogonal. 
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 Now this figure shows the modes of vibration of the plate. So, this is the optimal radius 

which happens to be around 0.8, non-dimensional values. So the radius is 0.8. This is the 

fundamental mode; these two are the degenerate mode. As you can see that, this is 

nothing but a rotation of pi by 2, which is the symmetry of this problem because this is 

the square plate; rotation of pi by 2 is not going to change the problem. You can see that 

this mode is rotated version of this mode and vice versa. Then this is the third, distinct 

mode; these are the degenerate modes; the second mode is degenerate. Now it may be of 

a interest to see what happens when a changes when we vary a. 
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This figure shows, the variation of the first few non-dimensional circular Eigen 

frequencies with a. So this is the fundamental frequency of the plate with variation of a. 

So, you can see that the maximum occurs somewhere here; these are degenerate; there 

are two frequencies here; two modes corresponding to this branch and this is the next 

higher mode and then these are some further higher modes. You can see the variation of 

thus Eigen frequency of the plate with a. So, we have seen how we can optimally support 

square plate or now you can attempt any other form of plate with a circular support and 

trying to find out the optimal support radius for example, that gives the maximum 

stiffness to the structure. So, this is a very important problem in structural engineering.  
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The next problem that we are going to look at is; we have a plate; we would like to see 

what happens when a plate is having stiffener, a stiffened plate, the vibrations of a 

stiffened plate. We consider again a square plate. We consider that this plate is clamped 

on these two opposite edges. So, these two edges are clamped. The coordinate system is 

located at the geometric center. These sides are 2a and this is stiffened on these edges are 

free, but they are stiffened by beams. We have two stiffeners on these two free edges. 



(Refer Slide Time: 48:44) 

 

So, this is the description of the problem. Now, let us look at the kinetic energy. The 

kinetic energy is composed of the kinetic energy of the plate and the kinetic energy of 

these two beams. We assume, consider this plates to be this plate to be a Kirchhoff plate 

and this beams to be Euler Bernoulli beams. The kinetic energy of the plate is given by 

this and along with this, we have two beams on these two edges; rho a is the mass per 

unit length times the length times the velocity; now this velocity is a velocity of this 

point; so this has to be calculated at, so for this beam at y equal to minus a. We consider 

identical beams; so rho a is the same for both. So, that is the kinetic energy of the total 

system. Now the potential energy again will be the sum of the potential energies in the 

plate and in the beams. That is the plate part, and in addition to this we have, so 

everything being uniform… So this term brings in the strain energy stored in the beams. 

Now, once again to simplify these expressions, we use a non-dimensionalization. So, 

then the Lagrangian reads… This is the potential energy of the plate and this term is for 

the two beams.  Now for the admissible functions, for the Ritz method, we will use once 

again the Ritz discretization. The admissible functions, this expansion is taken in the 

forms such that the geometric boundary conditions are satisfied. So, in this problem we 

have the geometric boundary conditions only on these two edges, where the 

displacement and the slope, they are zero. On these two edges, we have the 

displacements and the slopes as zero. So, the geometric boundary conditions, the 

functions that respect these geometric boundary conditions, these geometric boundary 

conditions can be written as in this form… 



So, you can see that it starts with quadratic in this x at both boundaries so that the slope, 

the displacement is zero at x equal to minus 1 and plus 1, as well as the slopes are zero at 

x equal to minus 1 and plus 1. So, if you use this expansion in the Lagrangian and 

discredited and finally solve the Eigen frequencies, which are obtained as the non- 

dimensional numbers, so the first few circular Eigen frequencies are obtained like this; 

and the dimensional Eigen frequencies are obtained from here. Now, once you have the 

Eigen functions which are obtained once again from this expansion by calculating the 

Eigen vectors of the discredited system, you can determine the modes of vibration of the 

plate. 
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In this figure, I have plotted these first four modes of the plates. You can see these edges 

of the clamped edges; these edges are the clamped edges. So, you can see the 

displacement and of course, this displacement and the slope will be zero, because the 

geometric boundary conditions have been satisfied. Now here this is a stiffened edge, 

you can see that displacement here is maximum here it is not so high. Had there been no 

stiffeners then this would have vibrated like a beam, so the displacements here also 

would have been as high. Because of the stiffening effect of the beam, we have lower 

displacement at these edges. This is the second mode; this is an asymmetric mode with 

one nodal line at the center. Here this is the next higher mode with two nodal lines and 

here you have one nodal line parallel to the support. Here you can see the displacement 

of the stiffened edge is very low. 

To summarize we have looked at some special problems, two special examples of a plate 

vibrations. We started off with the variation formulation of plate dynamics which can be 

used to derive not only the equation of motion, but also the boundary conditions. Then 

we have looked at square plate on a circular support and stiffened, edge-stiffened square 

plate. So, with that I conclude this lecture. 
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