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Today, we are going to discuss the vibrations of rectangular plates. In the last lecture, we 

had seen the mathematical modeling of plate vibrations under small transverse 

displacements. 
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So, today, we are going to look at the vibrations of rectangular plates. Let us recall that 

the equation of motion, for Kirchhoff plate. So, this is the Kirchhoff plate model, where 

this nabla 4 is the square of the Laplacian, and that turns out to be in this form; And D is 

in terms of the Young’s modulus E, thickness cube, thickness of the plate h cube divided 

by… where nu is the Poisson ratio. Here of course, rho is the density of the material of 

the plate. 



This is a Kirchhoff plate model for a plate with constant thickness. Now along with this 

we will have of course the boundary conditions, which we will look at as we proceed. 

So, we are interested in the modal analysis. We will be a looking for solutions. So, we 

are looking for solutions for rectangular plates. This is in the Cartesian coordinates. So, 

we look for separable solutions, space time separable in this form. So, suppose we have a 

plate lying in the x y plane and the displacement the field variable w is measured in the 

transverse to this plane which means a perpendicular to the plane of the paper. So, if you 

substitute this solution form in the equation of motion, we can write this as… and we 

will make a redefinition of; so, we will rewrite this as… where we have defined this 

gamma as omega square, rho times the thickness divided by this constant D. This is our 

differential equation of the Eigen value problem. The complete Eigen value problem 

description will also have the boundary conditions along with this differential equation. 

Let us look at this differential equation first. 
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We have, I can write this as in the equation of motion, this operator in the differential 

equation of motion; I can write this as nabla power 4 minus gamma power 4 operating on 

W, and that is zero; and I can factorize this in this form. Now, these two operators they 

commute. So, this can operate first or this can operate first; it does not matter in which 

order. Then if I consider two functions such that: this operator operating on W1 is zero 

and W2 is such that… So, these two functions satisfy these differential equations. Then I 

can say that the solution W can be written as a combination of W1 and W2. So, this can 



be very easily checked that if you construct solution like this, then this is going to satisfy 

our original differential equation of the Eigen value problem. Now, but it is so happens 

this is as we will discover very soon that this is not the most general solution structure, 

that is possible. So, this solution is valid or good for a class of problems. So, by class of 

problems, I mean a class of boundary conditions. So, this structure can be used to satisfy 

a class of boundary conditions. 
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Now, let us look, let us search for the solutions of this class; then we have to look one by 

one at these two differential equations. So, let us first take this differential equation, 

which… so, this differential equation. Now, this differential equation is also known as 

the Helmholz equation, which we have also come across when we discussed dynamics of 

membranes. So, when we studied the Eigen value problem for the membrane, we have 

encountered this differential equation; and the solution, we can recall, is in this form. So, 

the general solution of this differential equation is…So, that is the general solution of the 

Helmholz equation, where these alpha and beta, they satisfy the condition that alpha 

square plus beta square must be equal to gamma square; that we have already discussed. 

Now, let us look at the other differential equation. So, this nabla square minus gamma 

square operating on W2 is zero. Now, let us look for the solution with the structure, 

which are separable in x and y. So, if you substitute this solution form here, then I can 

write… So, let me indicate this by dots, so what I have used is; this is del del x or d d x 

and dot indicates d d y. So, if I divide this equation throughout by x y then, I have this 

structure of the equation. Now, you see that this term is only function of x; this term is 



only a function of y; and this is a constant. So, for arbitrary x y, if this equation has to be 

satisfied then each of them must be constants. So that would imply… Let me indicate 

this constant by alpha bar square and y, this constant beta bar square. In that case, what I 

have is alpha bar square plus beta bar square must be gamma square. 
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So, now let us look at these differential equations for capital X and capital Y. So, these 

differential equations they read… so double derivative of capital X minus alpha bar 

square x must be zero and we know that the solution of this differential equation may be 

written as… Let me write this as, first term as a sine hyperbolic… Similarly from the 

second equation… so the solution of this can be written as C3 sine hyperbolic beta bar y 

plus C4 cos hyperbolic beta bar y; and this of course with a condition that alpha bar 

square plus beta bar square equal to gamma square. Now, then let me write down the 

solution so far. So, our W is W1 plus W2; therefore we have all these terms. Now, you 

see the actual solution of this W2, so W2 is X multiplied by Y; so now this product I can 

write, if C1 C3 I write as A5, then thus is A5 sine hyperbolic alpha bar x sine hyperbolic 

beta bar y, then I can… Now, you can see here that we have product of the trigonometric 

functions in x y direction and product of the hyperbolic functions separately again in x y 

directions. In this class of solutions, there is no product of trigonometric and the 

hyperbolic functions. So, this solution, we can intuitively have an idea that this is not 

general enough. So, but this solution; this nevertheless is the solution which can solve a 



class of problems. So, we can use this solution for a class of boundary conditions. Let us 

look for certain examples. 
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So, the first example that we are going to take is that of a simply supported; so let us 

consider a plate which is simply supported on all four boundaries. So, let us consider this 

as a, and this a s b. So, the boundary conditions for this plate, as we have seen in our last 

lectures; so the boundary conditions, so at x equals to zero, which means this edge, and 

at x equals to a, which means this edge, the displacements are zero; and since they are 

simply supported, the moments are also zero; and the moments I this case happen to be 

double derivative of w with respect to x. Similarly at these two edges, the displacements 

at y equals to zero and y equals to b that means at these two edges, displacements are 

zero, and bending moments are also zero. So, these are the boundary conditions for the 

simply supported plate. Now, the corresponding boundary conditions for the Eigen value 

problem, so they can be easily determined from here. So, these are the corresponding 

boundary conditions for the Eigen value problem. 
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Now, let us look at the solution and these boundary conditions. So, this was our general 

solution, and these are our boundary conditions. Suppose when x equal to zero, these 

terms vanish. So, we are left with these four terms. Similarly, when you take double 

derivative with respect to x and looks at x equals to zero, then again you will find that 

those terms will vanish. Similarly, when you consider y equal to zero, the displacement 

and curvature, double derivative with respect to y; so if you look at all these conditions 

that you obtained, then finally using these conditions you will come to the conclusion 

that the solution will boil down to… Now, here we have used the conditions at x equal to 

zero for the displacement and the double derivative of the displacement; and at y equal to 

zero the displacement and the double derivative of the displacement; so, we have some 

further boundary conditions, which we must satisfy with these equations. Now, then if 

you use those conditions, then so the remaining boundary conditions; so if you use the 

remaining boundary conditions, then you will find, you will obtain these conditions. So, 

for example, when you use W at x equal to a equals zero, then sine of alpha a for all y 

must be zero; and when you take the double derivative with respect to x, then again you 

will get sine of alpha a equal to zero. So, then you have this condition; and you have 

another condition imilarly sine beta b equal to zero; this is for W at y equal to b and W 

double dot at y equal to b vanishing. So, that will give us this condition. So, that implies, 

the first condition implies alpha, now this get indexed, because there are countably 

infinitely many solutions; so alpha m times a must be equal to n pi; and from here, 



another index; so m and n can have values from one to infinity. So, if you recall the 

definition of, the constraints on these alpha and beta, that must be equal to gamma 

square; and if you look back, then this gamma square, so you have this gamma defined 

as… so this gamma is now also get indexed because of this m and n. So, omega is also 

get indexed as m and n, so omega m n. If I now use these expressions of alpha m and 

beta n, so this is m pi over a, and… So, that is what we are going to obtain as; so, this is; 

so, omega m n square is given by this. Now, so we obtain the circular natural frequencies 

of the plate, and the Eigen functions are obtained from here, they also get indexed. These 

are the Eigen functions. 
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Now, you can quickly see that these Eigen functions satisfy the orthogonality conditions; 

so that is a b over 4. These are the Kronecker’s delta functions; they take the value one 

when the two indices are equal. These Eigen functions, they are orthogonal and the 

general solution, we can write down the general solution of the plate using these Eigen 

functions, where I have converted this to an amplitude and phase form, the temporal 

function. So, we can have this general solution. Now, let us look once again at these 

Eigen functions. So, these are, we have obtained these Eigen functions even for 

membranes; and the modes look very, the modes of vibration are the same for the simply 

supported plate and that of the membrane. Now, let us look at another example of the 

plate with mixed kind of supports; so on two edges we will consider simply supported 

edges and the other two opposite edges we will consider as clamped. 
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So, in the x direction, the length is a, and here it is b again. Now, we will assume that this 

side is simply supported; and these two sides are clamped. So, these two are clamped; 

and these two edges are simply supported. So, the boundary conditions for such a plate, 

with such boundary conditions, the mathematical representations are the displacements at 

x equal to zero at a, they must be zero; the moment these also must be zero at the simply 

supported edges. For the clamped edges, we have the displacements at y equal to zero 

and at y equal to b; and slopes at these two edges as zero. So, corresponding to these 

boundary conditions, the boundary conditions for the Eigen value problem… Now, if 

you look at these boundary conditions and also look at; so these are our boundary 

conditions now; and the kind of solution that we had here; so if you now use these 

boundary conditions for this solution, then you will find that this solution can not satisfy 

this set of boundary conditions. That can be checked. You have here at y equal to zero 

and once with single derivative of y. So, this structure being special, these boundary 

conditions can not be satisfied by this class of solution. So, we have to start a fresh for 

these boundary conditions; this set of boundary conditions, we have to look at the Eigen 

value problem at a fresh. 
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So, let us look at. So, this was the differential equation of the Eigen value problem. Now, 

here we have simply supported edges at x equal to zero and at x equal to a. Now, let us 

try some solution which already satisfies these two boundary conditions, at x equal to 

zero and a, the displacements and moments being zero; and we know that sine m pi x by 

a satisfies these four boundary condition, two on each edge. For the y coordinate, let us 

have this unknown function, function as yet unknown, Capital Y of y. Let us try this 

solution in the differential equation of the Eigen value problem. If you substitute in here 

and make some simplifications, then… So, this is what you are going to get. Now we can 

try a solution for this; let us say, if you try a solution like this, then p we will have as… 

You can see that this differential equation, so, this will reduce to… This can be 

decomposed as… So that implies that must be zero. 
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So, we have two solutions of p. Let me call them as; let me name these solutions of p as 

let say alpha, p1 is alpha equals; so, let me consider this, gamma square plus… and p2, I 

call that as beta. So, we have these two solutions and correspondingly we can write Y 

as… So, if you define beta in this form and alpha in this form, then I can define the 

solution… So because of this definition of beta which is; you have both real and 

imaginary solutions of for p and by defining p2 in this form, I can write this in terms of 

trigonometric functions. So, then my solution stands as… Now, we have satisfied four 

boundary conditions by choosing the function in x; we are left with these four boundary 

conditions as yet. Now if you substitute in this solution form, in these boundary 

conditions finally, you will get the characteristic equation .For non trivial solutions of C1 

C2 C3 C4… So, this is our characteristic equation. If you solve this equation numerically, 

and you already have the relation between gamma and the frequencies; so, you can find 

out the natural frequency. Now this… So, I have written other first three modes and if 

you look at this definition, this is also square. So, gamma is, so gamma power four is… 

So, from here you can determine the natural frequencies. 
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Now, this figure shows the first three modes of vibration of this plate. So, in the first 

mode there are nodal lines; whereas the second, and the third mode, they have these 

nodal lines. Now, here you can see these two are the clamped edges, so the slopes are 

zero; whereas, these are simply supported edges. So, to recapitulate, we have today 

discussed the vibrations of rectangular plates; and we have seen that the solution is, 

determining the solution is little complex. We have looked at two kinds of boundary 

conditions or two classes of boundary conditions; and we have solved these problems; 

and determined the Eigen frequencies and the modes of vibration. With that I conclude 

this lecture. 
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