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Today, we are going to discuss the vibrations of rings and arches. In the previous lecture, 

we initiated some discussions on the dynamics of curve beams, and we had discussed 

about beams with constant curvature which are in your plane. So, before we look into the 

vibrations of rings and arches. Let us recapitulate briefly, but we discussed in the 

previous lecture. 
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 So, we considered… So, curved beams are found in various civil structures like bridges; 

they are used in arches, so and various other places. Now, we looked at the dynamics in 

the previous lecture on the dynamics of curved beams, and we observed that the 

important aspect of the dynamics is that the axial and the transverse are coupled. So, they 

are coupled because of this curvature of the structure of the beam. So, we had made 

some simplifying assumptions when we discussed about the, when we formulated the 

dynamics. We assumed that the beam is still planar though it is curved in a plane. We 

considered that, we assumed that the deflection is much smaller than the thickness of the 



beam; and the thickness in turn is smaller, much smaller than the curvature which is 

assumed to be a constant; and we also assumed that the Euler Bernoulli hypothesis holds, 

which means that cross section of the beam which was initially perpendicular to the 

neutral fiber remains perpendicular to the neutral fiber, remains flat and perpendicular to 

the neutral fiber even after deflection. So, we neglected shear which means that we 

considered that the beam is infinitely stiff in shear. So, with such considerations in the 

previous lecture, we have derived the equation of motion using the variation of 

formulation. 
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 So, we considered the Lagrangian which we wrote as the kinetic energy minus the 

potential energy; and the kinetic energy was one half of rho A… Here, these are the field 

variables. So, u… So, this is the field variable for the axial or circumferential motion or 

deflection and this is the transverse… w is for the transverse deflection. So, this and 

minus the potential energy we calculated as… So, here the angle varies from say zero to 

whatever angle you have. So, the angular extend of the beam. Now, in the previous 

lecture, we also made some simplifications based on certain redefinitions. So, let us 

consider some non-dimensionalization. So, the time is non-dimentionalized. So, t tilde is 

the non dimensional time; u is non-dimensionalized using the radius of curvature of the 

beam; similarly w was non-dimensionalized. Now using this non-dimentionalization, we 

can rewrite this Lagrangian. So, this is our Lagrangian. Here Sr, we have defined as the 

slenderness ratio, which… So, this is the slenderness ratio which tells us how slender the 



beam is. So, higher the value the more slender it is. So, it is the radius of curvature 

divided by the radius of gyration of the cross section about the neutral axis. Now, so with 

this Lagrangian, we derive the equation of motion. So, this was the equation 

corresponding to u, the circumferential motion and corresponding to the transverse 

motion… We have these two equations. So, today we are going to first discuss the 

vibrations of rings. So, in the case of… So, the equation, the two equations of motion… 

So, this is the circumferential motion, and this is the radial or the transverse motion. So, 

we imagine that we have a uniform ring. So, this is the radial direction and this is the 

circumferential or tangential direction. This is the angle theta. 

Now, the boundary conditions; we discussed the boundary conditions for a complete ring 

like this. So it turns out to be periodicity conditions on the field variables. So, we have 

the periodicity conditions on the field variables. Now, we are going to perform the modal 

analysis of this system. So, we search for solutions with the structure… So, we are 

interested in solutions with this separable structure. 

Now you see that, this is a function of theta and t. Now it must periodic in theta. So, we 

must have solutions of the form like this… where n can take values 0, 1, 2, etc. So, this is 

to enforce the periodicity conditions, to satisfy the periodicity conditions that we have 

written here. So, we search for solutions of this form. Now, here if n is zero, then as you 

can see this becomes independent of theta, which means then we are talking about axi-

symmetric modes; so, modes which are independent of theta. For non-zero values of n, 

we have non axi-symmetric modes. So, let us see what happens when we consider a 

solution like this. So, we substitute the solution in the equations of motion. 
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So, if you do that then you can check that upon simplification of these equations… So, 

this is the first equation. The second equation reads… So, these are the two equations 

that we obtained by substituting the solution form, modal solution form in the equations 

of motion. Now for non trivial solutions of U and W, this capital U and capital W, we 

must have the determinant of this matrix… So, we can write this as matrix. So, 

determinant of M must vanish. So, for non trivial solutions of U and W… and that leads 

to the characteristic equation, which can be obtained easily. So, this is our characteristic 

equation. Now, we have to solve for omega from this equation, substitute in these two 

equations, and then solve for this Eigen vectors U and W; and then, we will obtain the 

Eigen functions. So, you see the Eigen functions will be complex like this. So, U and W, 

themselves, will be, can be complex, because you have this i here in these equations. So, 

U and W are themselves complex; and hence, this Eigen functions are all complex. 

Now, we have discussed already that when we have complex Eigen functions, both the 

real and the imaginary parts of these can be the Eigen functions and so, what we can 

conclude is that for a given Eigen frequency, we can have more than one Eigen function. 

This is called degeneracy. So, we have multiple Eigen functions for a given Eigen 

frequency. Now, let us see then; solve this equation, characteristic equation, and try to 

find out the Eigen frequencies and the Eigen functions which will characterize the mode 

of vibration. So, we start with the value n equal to zero. 
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 So, let us consider axisymmetry. So, n is equal to zero. So, if n is equal to zero, then you 

can see straight from here; so from here, so n being zero, this is the characteristic 

equation for axisymmetric modes. So, that would imply… So, we have omega equal to 

zero and omega equal to plus or minus one. So, let us first look at omega equal to zero.  
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So, the Eigen vector corresponding to omega equal to zero turns out to be… If you solve 

the matrix equation, then U and W turn out to be 1 and 0. Now, this means that, see the 

solution was… So, n is 0, omega is also 0. So, this term is absent and so the motion is, 



this is 1, and this is 0. So, which means there is a motion along the circumferential 

direction of the ring with zero frequency. 

So, this is nothing but rigid body mode. So, this is the rigid body mode which implies 

that angular momentum is conserved. So, this is not vibratory mode. So, next let us look 

at the other solution which is omega equal to plus or minus 1. So, in this case if you 

solve the Eigen vector that turns out to be 0 and 1. So now, there is no motion in the 

circumferential direction, the motion is… So, here n is equal to 0, but omega is plus or 

minus one, which means it is an oscillatory mode. So, it will be an oscillatory mode 

which is only in the radial direction. So, you have something known as breathing mode. 

This is sometimes known as a breathing mode. So, the ring expands and contracts 

axisymmetrically. So, this is a breathing mode. So, this shows the breathing mode. 
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Now, next let us consider the case n equal to one. So, now, we are talking about non 

axisymmetric modes of course, because there is theta dependents; as soon as n is non 

zero, we have theta dependents. So, in that case if you substitute n equal to 1 in the 

characteristic equation, once again you will find that the first solution is omega equal to 

zero. So, this is one solution for n equal to one, omega equal to zero is again a solution. 

So, that you can see directly from here once again; so, if n is equal to 1, this term drops 

out in the characteristic equations. So, once again omega equal to zero is solution and 

then there is another solution which can be determined from here. So, the first solution is 



omega equal to zero; again we suspect that this is a rigid body mode which it is. So, if 

you calculate once again the Eigen vectors, that turn out to be i and one. So, let us see 

what this means. So, this gets multiplied; the Eigen functions are nothing but… So, these 

are the Eigen functions and that can be written as… So, if you consider this solution then 

let us see how is the deformation. So, this is the ring. So, now, this is the deflection of 

the center the neutral fiber. Now, sine theta with the negative, so this implies that… So, 

the theta equal to zero is the datum. So, this is u, this is the u motion, and this is the w 

motion. So, u is zero here, whereas w is plus one; and then you will find that at this point 

theta equal to pi by 2, so, this is minus one; now minus one would mean, because the 

axis here is like this, so minus one would mean this; and similarly you can find out that 

this represents the motion like this, and similarly this Eigen function vector will 

represent a motion like this. 

So, these are nothing but the rigid body modes in the x direction, and in the y direction. 

So, these are again rigid body modes which imply the linear momentum conservation. 

Now, let us consider the other solution for n equal to one. We saw that there are two 

solutions; one was zero; the other one turns out to be this and the Eigen… So, for this, 

the Eigen vectors happen to be given by these complex notations. So, this turns out to 

be… following these notations. So, if you multiply this with exponential  i theta, so, here 

we have… So, these are the Eigen function vectors. Now, here these are actually the 

non-dimensional frequencies. Now, if you want to find out the dimensional frequencies, 

they are given by… So, these are the dimensional frequencies. So, these are the Eigen 

functions that we have for this mode. Now, let a have a look at this mode. This shows, 

because of some aspect ratio problem, it might seem like an ellipse; but actually this 

dashed one is a circle which is the undeformed position of the ring. Now here, this black 

one is the mode corresponding to the imaginary part as you can see here. So, let us 

understand this motion before we look at this picture again. So let us consider this 

imaginary part. Once again, let me draw the ring. So, if you consider the imaginary part 

of the solution, so this is the Eigen function, the motion can be written as… where 

omega is of course given by the circular Eigen frequency. Now, in the circumferential 

direction, you have this as sine theta, which means here there is no circumferential 

motion, but there is radial motion. Here, you have circumferential motion as you 

increase; here the circumferential motion is maximum. This is positive plus one in this 

direction. When you come here, the motion is purely radial, no circumferential motion at 



this point. Similarly, we have circumferential motion in the negative direction here at this 

point and no radial motion here. So, which means you expect the ring to… So, the 

centerline of the ring will look like this. It seems that the centerline, atleast the geometric 

center of the figure is shifted; this is an exaggerated figure of course. So, it seems that at 

least the geometric center is shifted, but actually the center of gravity of the ring is not 

shifting, because of combination of radial and circumferential motion. So, the particles 

are actually moving in this direction circumferentially, while radial motion is like this. 

So, we look at this figure one second now. So, here you can see this is the unreformed 

ring and I have drawn these empty circles to indicate the particles before deformation, 

and this filled circles are the particles after are this material points after deformation. 

So, you can see that there is a clustering of these materials points here. So, you have 

compression here and expansion here. So, that finally, it is a momentum conserved 

mode. So, continuing this way you can then solve for higher modes. 
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But then let us see something interesting. Now, we have discussed as yet, till now this 

mode which is the breathing mode and this mode; but they are not the lowest mode. The 

lowest mode appears to be like this. Once again there is some aspect ratio problems. So, 

this dashed one is the unreformed ring, and this is the deformed configuration. So, you 

see this, so in this mode, it is moving out here and moving in here and vice-verse. So, 



this is going to oscillate like this and. So, there is a phase difference between this and this 

which is pi. 

Here, you have the higher modes. You can see the circular Eigen frequency non-

dimensional; this is the next higher, and this is the fourth mode, and this is the fifth mode 

and so on. So, you can calculate all the Eigen frequencies of various modes and also plot 

the Eigen functions. Now, looking at these figures it might seem that these are nodal 

points, but this has to be checked properly, because now we have not only radial motion 

but also circumferential motion. So, if node is considered to be a point at which there is 

no motion then this might not be nodes. 

For example, here this is definitely not node. So, occurrence of actual nodes has to be 

checked by looking at motion of material points on the ring. So, till now, we have been 

discussing about vibration of rings.  
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Next, we will discuss vibrations of arches, circular arches. So, circular arch is nothing 

but a sector of a ring. We will consider two examples of arches; one is the pinned arch 

and a clamped. Now, as you will realize that the equations of motion for the arches, for 

the curve beams they are coupled and complicated, so what we are going to do for the 

case of arches is that we are going to solve this approximately using the Ritz’s 

procedure. So, let us see what are the boundary conditions; because we need to choose 

admissible functions for applications Ritz’s method. So, let us look at first pinned-pinned 



arch. So, this is a schematic representation of a pinned-pinned semi circular arch. Now 

the boundary conditions, if you look back the discussions that we have on the boundary 

conditions of the curved beams, then at theta equal to zero and at theta equal to pi, we 

must have u equal to zero, which is the circumferential motion and w equal to zero; and 

we also must have… So, we have six boundary conditions as we have discussed. Here, 

we have zero displacement at these two points and this is the zero moment conditions at 

these two ends. Now, we have these as the geometric boundary conditions. So to choose, 

now we have to choose the admissible functions; we can choose the admissible 

functions. So, we expand our field variables; so the way I have chosen for this problem; 

so the first admissible function, this is zero at theta equal to zero and also zero at theta 

equal to pi. So, I can now construct… So I have taken a three term expansion for u and 

similarly a three term expansion for w using the same admissible functions. Now these 

expansions we substitute in the Lagrangian. So, we have a semi circular arch zero to pi. 

So, this is our Lagrangian; we substitute these expansions here and do the integration 

over theta; and finally we obtain the discretized equation of motion in terms of this 

coordinates a. So, we will obtain… where this vector a is a1 to a6, and we can perform 

the modal analysis and obtain the circular Eigen frequencies. So for this arch, pinned-

pinned arch, the non dimensional circular, the first two non-dimensional circular Eigen 

frequencies are obtained as… Now from here, you can calculate the dimensional circular 

Eigen frequency. Now this figure shows the first two modes of vibration of the pinned-

pinned arch. So, you can see that, so, this is the unsymmetric mode and this is the 

symmetric vibration mode which is having a higher frequency. 
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Now, in a similar manner you can perform for the clamped-clamped arch. So, this is the 

clamped-clamped arch. Here, the boundary conditions at zero and pi happen to be like 

this. Now, here all the boundary conditions are geometric boundary conditions. 

So, in view of these, we have this expansion. Now here, because you have this slope 

conditions as well, so, del w/del theta condition; so, the admissible functions for w must 

be taken like this, theta square pi minus theta whole square. So, if you once again 

substitute this in the expansion, and calculate the discretized equation of motion and 



further calculate the Eigen frequencies, they turn out to be… So, the non-dimensional 

circular Eigen frequencies appeared as... So, these are higher than the pinned-pinned case 

as we expect. So, here this figure shows the modes of vibration. Again this first mode is 

the unsymmetric mode, and this is the symmetric mode with higher frequency. 

So, let us recapitulate what we have discussed today. We discussed the vibration of rings, 

and arches. So, we have looked at some interesting results in the vibrations of rings; and 

we have considered the two kinds of semi circular arches, and using Ritz’s method we 

have determined the Eigen frequencies and modes of vibrations. So, with that I conclude 

this lecture. 
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