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Wave Propagation in Beams 

In a previous lecture, we had studied wave propagation in one-dimensional continuous 

media governed by the wave equation; and we have looked at propagation of general 

wave forms, as well as harmonic waves. Today, we are going to discuss wave 

propagation in beams.  
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So, let us first look at the equation of motion of a Rayleigh beam. So, this is the Rayleigh 

beam model. Now, when we talk of wave propagation, we would be interested in 

propagation in an unbounded medium. So, we do not consider any boundary conditions 

for the moment, assuming that either the boundaries are too far off, or the time interval in 

which we are looking at this phenomenon is very short. So, we are interested in a looking 

at propagation of harmonic waves, which we will represent in the complex form. So, we 

would like to look at the propagation of waves of this form, where this k is the wave 

number, lambda is the wave length, and omega is the circular frequency.  



Now, we have discussed previously that this is the form of harmonic waves. So, it has 

got two parameters k and omega and the amplitude D. Now when the harmonic wave 

propagates in a medium for example, string or here a beam, then this k and omega can no 

longer be independent variables. So, they get coupled. So, let us see that coupling. So, 

when we substitute this in the equation of motion, so, we obtain this relation between 

omega and k. So, this here I have simplified as… I substituted in here and simplify by 

removing the exponential term. This is known as the dispersion relation. 

So, this relates the frequency and the wave number of the harmonic wave that can 

propagate in the Rayleigh beam. Now we will simplify this little bit. So, if we define 

omega tilde as omega times rg over CL, where rg is the radius of generation of the cross 

section and CL is the speed of actual waves in the beam; and we also define k tilde as rg 

time’s k. So, with these definitions of omega tilde and k tilde the dispersion relation can 

be written as… So, this is our dispersion relation represented in terms of omega tilde and 

k tilde which are non-dimensional frequency and wave numbers. Now in the case of an 

Euler Bernoulli beam, for an Euler Bernoulli beam this relation… which implies that… 

So, this is the dispersion relation for the Euler Bernoulli beam. Now we have seen before 

that the speed of propagation of the harmonic wave is which is known as the phase 

speed.  
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So, the phase speed or phase velocity is given by omega over k. So, that is the phase 

speed or phase velocity of a harmonic wave in a medium. Now if we calculate the phase 

speed in Rayleigh beam for example, so we have will write as… So if you use the 

expression of omega tilde and find out this ratio, then we have the phase speed. It is a 

plus or minus, but then it represents the speed in the positive and negative directions. So, 

the phase speed is k tilde over under root one plus k tilde square; and similarly for the 

Euler Bernoulli beam is given by just k tilde, because omega is plus minus k tilde square. 

So, omega tilde over k tilde is just k tilde. So, this indicates that as k increases the phase 

speed in an Euler Bernoulli beam increases linearly with the wave number. 

So, waves with higher wave number which means, shorter wavelengths will propagate at 

higher speeds in an Euler Bernoulli beam, and this increases as k tends to infinity cp 

tends to infinity; but if you look at for the Rayleigh beam then, as k becomes very large, 

much larger compare to one in that case this becomes negligible. So, it is under root k 

tilde square. So, this becomes one. So, cp is bounded whereas, in an Euler Bernoulli 

beam it becomes unbounded. Now this is unphysical. So, we can understand that the 

Euler Bernoulli beam represents an unphysical model when the wave lines become very 

small which means, wave number goes to infinity. 

So, for very short wave lengths they can travel at infinite speed. So, as the wavelength 

goes to zero, the speed goes to infinity which is quite unphysical, whereas, in the 

Rayleigh beam this is bounded and the reason it is bounded is that is the presence of the 

rotary inertia term. So, you can see the important role played by the rotary inertia term in 

a beam modal. Now, because of this infinite phase speeds something very strange 

peculiar can happen in an Euler Bernoulli beam model.  

So, suppose you disturb the beam at a particular point. Then the effect of the disturbance 

can be felt at infinite distances from the source of disturbance, because short and shorter 

wave lengths, because if you, for example, give an impulse then you are giving 

disturbance of all possible wavelengths and impulse is represented by all possible 

wavelengths; it is a combination of all possible wavelengths, because it is Fourier 

transform is one. So, all possible wavelengths have equal contribution in the impulse. 

Now since for very high wave numbers, so very short wave lengths, the speed is infinity. 

So, you can feel the effect of that impulse at large or infinite distances in an Euler 



Bernoulli beam which is quite unusual. So, it is quite unphysical that wave. So, Rayleigh 

beam is a in that wave better model for the beam. 

So, this is, because of this rotary inertia term. The other thing that you must note here 

you see the wave speed is a function of in both cases the wave speed the phase speed is a 

function of the wave number. So, what this means, is that if you have collection of 

harmonic waves constructing a wave pulse or a wave form and when this wave form 

propagates since different wavelengths are propagating at different speeds so obviously, 

we expect that see the initial wave pulse of the wave form is constructed using these 

individual harmonic waves in a certain manner. Now suppose some waves travel at some 

speed and some other waves travel at some other speeds. 

So, different waves are travelling different wavelengths are travelling at different wave 

speeds. Then this combination the combination of all these harmonics is going to change 

the wave form. So, the wave form change as it propagates this is known as dispersion. 

So, we have dispersion when a wave pulse propagates in a beam. So, this is an effect of 

dispersion is change of waveform. So, when you have dispersion, the waveform changes. 

This is an effect of dispersion. Now here, let us look at this dispersion relation of the 

Euler Bernoulli and the Rayleigh beam models. 
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So, you can, so this I have plotted omega tilde versus k tilde. So, you can see that this is 

this is quadratic in k tilde as we have seen omega tilde is k tilde square, whereas, this 



tends to a line with a certain slope and omega over k becomes finite. So, this is the 

Rayleigh beam and this is the Euler Bernoulli beam. Now so, we have looked at this 

dispersion relation and now let us calculate the wave that can propagate in the beam. So, 

for that, we are going to once again.... so let me write down the dispersion relation once 

again. 
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Now, so this dispersion relation can be used to solve for k in terms of omega. So, let me, 

so if you do that solve, if you solve for k. So, the non dimensional, so we will solve for k 

tilde the non dimensional dispersion relation was... So, we had converted into non 

dimensional form. So, if you solve for k tilde, you obtain two values. So, you can see this 

is a quadratic in k tilde square. So, you have two values for each k1 and k2. So, these are 

represented, I am representing them as i beta 1 and beta 2. So, here beta 1 is… and beta 

2… which you can very easily find by solving this and representing… 

So, I am representing this k1 and k2 in this using this beta 1 and beta 2. So then finally, if 

you represent the full wave solution, so you have these four solutions of k tilde. So, you 

have four terms in the solution. So, this represents the waves that can propagate in the 

beams; so as per the solution of the wave number in terms of the non dimensional 

frequency omega. Now if you look carefully at these solutions then you find that these 

two terms, so, this term and this term, they actually do not represent any travelling wave. 



They are not actually travelling wave they are in fact, this is decaying in the positive x 

direction, and this is decaying in the negative x direction. 

So, if you actually have an infinite beam then these two solutions, these two terms 

actually will not exist. So, these terms can exist of course, when you have a boundary or 

when you have an obstacle or beam interacting with something external element, may be 

a massive element or a stiff element. So, whenever you have interaction of the beam then 

these terms can appear, otherwise these terms in an infinite beam these terms cannot be 

present. These are actually as I mentioned I am not travelling waves they are called 

evanescent waves they are decaying or evanescent waves. They are I mean, though they 

are called evanescent waves they are really not travelling waves or they are also called 

near fields. So, they exist near the boundary or mass point or an interaction point. 

So, they can exist only close to a boundary and their amplitudes will fall off. So, this will 

fall off in the positive x direction; this falls off in the negative x direction. Now, let us 

look at scattering of waves in which we will now have an opportunity to look at these 

evanescent waves on near fields. 
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So, now, one more thing before we proceed in the case of the Euler Bernoulli beam, the 

dispersion relation was omega square is k power 4. Now here therefore, we will have 

solutions of k. So, k square is plus or minus omega tilde; therefore, k tilde… So, you 

have 4 solutions. The only thing is here suppose I call them as beta then I have plus or 



minus i beta and plus or minus beta. So, both are; so, there is no beta 1 beta 2 as in the 

case of a of a Rayleigh beam. In the Euler Bernoulli beam it is just beta. Now we are 

going to look at scattering of waves in an Euler Bernoulli beam. So, let us consider this 

semi infinite beam. So, this end is connected to linear spring of stiffness kL and a 

torsional spring of stiffness kM. So, let us consider that there is an incident harmonic 

wave represented by… 

So, we have an incident harmonic wave in this form and then this is incident on this 

boundary, which has a stiffness element, there will be a reflected wave harmonic wave 

which we represent as… So, let me put this; let me call the wave numbers at present k1 

for the reflected incident and reflected and there will be now an evanescent wave, which 

we will represent in this form; this decaying wave is in the negative x. So, its 

representation would be… So, we have an evanescent wave, which is decaying in the 

negative x direction. Now therefore, the total wave field in the beam; so, you will not 

have a wave with negative x, since, as the beam goes up to minus infinity, such a wave 

would diverge. So, from physical considerations we have only one evanescent wave in 

this form. Now the total wave field is given by… Now here we have dynamic boundary 

conditions. So, at this end of the beam, we have two boundary conditions, because of this 

linear stiffness we will have shear force condition, and because of this torsional stiffness 

we will have a bending moment boundary condition. So, these may be represented as… 

where this alpha m is nothing but km the stiffness of the torsional spring, torsional 

stiffness over E I. So, that is going to give the moment and similarly the shear force 

condition… So, this is kL over E I. 

So, there is a positive, because the relation between moment and sheer force there is a 

negative sign. Now here we have finally, the boundary conditions which are dynamic 

boundary conditions. Now we substitute this wave field, wave form solution in the 

boundary conditions and we will try to compute this coefficients B and C in terms of A, 

because A is the incident wave which is, so, A is known. So, in terms of A we will like 

to know B and C which means, the amtitude of reflected harmonic and the reflected 

waves. 
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So, if you do that and consider that there is Euler Bernoulli beam… See you have two 

equations. So, these are the two equations obtained from the bending moment and the 

shear force conditions. Now these are two simultaneous equations in B and C. So, you 

can solve for B and C in terms of A. So, we will solve this as a ratio. So, B over A which 

we will call the coefficient of reflection for the harmonic wave and that is obtained as… 

So, this is the expression for the reflection coefficient as it is known as; and similarly, 

you can find out the reflection coefficient of the evanescent wave which is C over A as… 

So, here you need to substitute this expression of D over A, or the C, reflection of the 

harmonic wave. So, once you do that you can solve for the reflection coefficient for the 

evanescent wave. Now we can consider various special cases, for example, you can 

consider pinned end. So, when the end is pinned, we can consider that, so here if this end 

is pinned. So, we have infinite stiffness for the linear spring and zero stiffness for the 

torsional spring. So, in other words this is alpha L; this is alpha M. So, in that case if you 

substitute this; take this limit in these expressions then you obtain… So, if you, which 

means, that the harmonic wave is reflected with a phase inversion. So, phase change of 

pi; whereas, there is no evanescent wave reflection when the harmonic wave is incident 

on a pinned boundary. The next case could be a fixed end in which case both of them 

tend to infinity, and in this case the reflection coefficient for the harmonic wave is this 

and for the evanescent wave is given by this. So, now you have, this introduces a phase 

in the reflected harmonic wave and also you have additional another phase in the 

evanescent wave. You can have further conditions, for example, if you consider sliding 



end which means, that alpha L is zero; so, linear spring is zero, whereas, the torsional 

spring is infinite. So, in that case the reflection coefficient for the harmonic wave is one 

and the reflection coefficient of the evanescent wave is again zero. So, we see that now 

the there is no phase inversion the phase change is zero. So, the wave will get reflected 

without any phase change and there is no evanescent wave generated, because of this. 

So, similarly you can study a free end where both the stiffnesses vanish; so, there is no 

linear or stiffness then again finds out these coefficients the reflection coefficients for the 

harmonic and the evanescent waves. Next we look at then the situation when the 

harmonic wave is propagating in a beam and we want to look at the motion of the 

material points, let us say on the top surface or the bottom surface of the beam. So, we 

are interested in the motion of the material points on the surface of the beam, when it 

carries a harmonic wave, a propagating harmonic wave. This problem is interesting, 

because it has leads to a number of applications, specially in the ultrasonic motors. So, 

this is used in ultrasonic motors in a certain way. 
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So, let us look at motion of material points in the beam. So, consider this, so this beam 

element; so, we consider… and when this gets deflected… So, this distance… So, P was 

a point on top surface of the beam in the undeflected position and when this gets 

deflected this point moves to P prime. So, the axial motion of this point, because of the 

deflection may be written as, for small deflections it may be written as del w/del x is the 

small angle and times h by 2; so, the small angle times this height will be the axial 



motion of this point P. Now then I can write this vector this position vector P; so, this 

location was x. So, this location was x, now this is x minus, so, this is the x coordinate of 

the point P prime and the z coordinate, so, this was the initial z coordinate. So, that is the 

position vector. Once we have the position vector, we can write down the velocity by 

differentiating the position vector. So, that is the velocity vector. Now suppose you have 

harmonic wave propagating in this beam. So, this is the representation of the harmonic 

wave. Now if you substitute in the position equation, then you obtain… so, if you write 

this as px i cap plus pz k cap, then you obtain px as and pz as… So, this is the, so one is px 

and other is pz, these two coordinates. So, one here, we can very easily see that this 

satisfies… So, this is nothing but the equation of an ellipse; so, which means that this 

point P actually cases out and ellipse. So, its location, the centre of the ellipse is at x and 

h by 2. So, actually it is in this form; and you can find out its semi major and semi minor 

axes. So, the point traces an elliptic path centred x and h by 2. 

(Refer Slide Time: 53:24) 

 

Now, if you look at the beam, let us say a rigid body on top of it, which is pressed down 

upon on this beam; and this beam, if it carries the wave in this direction, then from the 

velocity expression, we can easily find out that velocity of these points on the top of at 

the, at this crest; the velocity is the negative direction. This can be find out by looking at 

the velocity expression; and this velocity set on the, at the crest. Say if you have a rigid 

plate or a body in contact these points then it is going to be transported with this velocity. 



So, to just that we have discussed today, we have looked at wave propagation in beams, 

we have looked at the dispersion relation and the wave propagation characteristics of the 

beam, in a beam; and we have seen how the Rayleigh beam is a better model than Euler 

Bernoulli beam. Finally, we have looked at the scattering of waves in a beam and the 

motion of material points of the beam. So with that, we conclude this lecture. 
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