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Applications of Modal Solution 

 In the previous lecture, we have discussed the modal analysis of beams. So, performing 

modal analysis is nothing but solving an Eigen value problem as we have seen; and what 

we obtained; we obtained the circular Eigen frequencies or the natural frequencies of the 

beam; and we also obtained the Eigen functions. These Eigen functions, they define, they 

describe the modes of vibration of the beam. 
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Now, these Eigen functions they form a complete basis for the shape of the beam. So, 

what we mean by complete basis is something like this. So what we mean by this is 

suppose, we have these Eigen functions. Let us call them… Now, there are infinitely 

many Eigen functions. Here I can draw only three and with a little stretch of imagination, 

you can think of this as an infinite dimensional space with each axis labelled with one 

Eigen function. So, any point in this space, in this infinite dimensional space with 

coordinate alpha 1 along W1, alpha 2 along W2, alpha 3 along W3 etc.; so this describes 

the shape of the beam. So, any shape of the beam may be represented as a linear 



combination of these Eigen functions. Now, when we say this forms a complete basis, it 

means that any possible shape of the beam can be represented using these Eigen 

functions. So, any possible shape can be represented in this form; then we say this forms 

a complete basis. So, these Eigen functions, therefore, give us a good way of 

representing solutions which may also be functions of time. So, suppose if these are 

coordinates which may be general functions of time, in that case the motion of this point 

in this space may be represented through these expansion. Now, these alpha k’s, they are 

functions of time; they form what are known as modal coordinates; and this space is 

known as the modal space or the configuration space. Now, this fact that any shape or 

any dynamical shape can be represented by this expansion allows us to solve a number of 

problems related to the vibration of beams; and this fact we have also seen in case of 

strings; and this is true in general for continuous systems. 
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So, let us today look at two such examples. First we look at an initial value of problem 

for a beam. So, the problem that we consider… We have a simply supported Euler-

Bernoulli beam. This beam is initially loaded with a force let us say F at the middle. So, 

there is a static force at the centre of the beam which is F. So, let me write down the 

equations. So, when we have; the problem we are going to address is like this. Initially 

the beam is displaced by the action of this force F applied at the centre of the beam and 

at time t equal to zero, this force is switched off. So, at the point this force is switched 

off, the beam is going to spring back. So, the equation of motion for the dynamics 



problem… So, this is the equation of motion and the boundary conditions… So, this is 

deflection is zero; this is the bending moment is zero at x equal to zero; and same way at 

x equal to l. Now, the initial conditions, we need to determine the initial condition which 

is the deflected shape of this beam. So, that will be obtained by solving the equation of 

statics. So, by solving this equation along with the boundary conditions that we have 

here; so if you solve this then you will obtain… and we assume that initially at time t 

equal to zero, the velocity of the beam is zero; and this is the shape. Now, this we can 

substitute in here and integrate out to determine the initial shape of the beam. But we are 

not going to do it immediately. We are going to first write the solution of this problem as 

an expansion in terms of the Eigen functions. We know that we can represent the 

solution in this form where these are the Eigen functions; and for a simply supported 

beam, Euler-Bernoulli beam, the Eigen functions are given by sine j pi x by l. Now, let 

us first solve this statics problem at time t equal to zero. Therefore, this is going to be the 

equation. So, at time t equal to zero, this expansion, so this is… so Cj times sine of j pi x 

over l; so at time t equal to zero, this is the expansion. So, if you substitute it here, so 

when we substitute in the equation of statics, this is what we obtain. From here, from this 

equation, we are going to solve these Cjs; and this velocity condition will immediately 

tell you; so if you consider that this is the velocity condition which is zero, so from here, 

substituting in the velocity condition, this is going to tell us that all the Sjs are zero. So, 

we only have these Cjs. So, to solve this, we follow the standard procedure. We are going 

to multiply both sides by sine a pi x over l and integrate over the domain of the problem; 

so, we take inner product. So, because of the orthogonality, this is going to filter out, the 

k
th

 term. 



(Refer Slide Time: 21:14) 

 

So, if we do that and simplify, then we obtain for odd values of k, we have Ck as non-

zero given by this; and for other, so for even values of k, we have Ck equal to zero. So, 

finally when we have all these, we can write the final solution. So, this is the final 

solution of the initial value problem. So, this is function of space and time. So, one can 

animate this solution to determine the response of the beam. 
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Now, let us look at another problem, which is the problem of a travelling force. Now, we 

consider, once again, the simply supported Euler-Bernoulli beam carrying… So, this 



beam is carrying a force which is travelling with a speed v. So, this problem is important 

in case of let us say bridges where you have travelling loads. This is a simplified version 

here. Here, we are considering a constant force travelling on Euler-Bernoulli beam. So, 

the equation of motion of this system… this along with the boundary conditions… and 

we also consider the initial conditions to be zero. So, which means the beam is 

undisturbed before the force enters the span of the beam. So, this is a forced vibration 

problem with general forcing. So, we can write down the solution of this problem as the 

homogeneous solution plus the particular solution. Now, we already know that this 

homogeneous solution can be expanded in terms of the Eigen functions and can be 

represented in this form. As this is a simply supported beam, therefore the Eigen 

functions are sine j pi x over l plus… So, this particular solution also we can expand in 

terms of these Eigen functions along with these modal co-ordinates. So, these 

coordinates capture the dynamics because of the forcing. So, these coordinates capture 

the dynamics of the forced motion. Now, when we substitute this solution form in the 

equation of motion; so this is the homogeneous solution; so this is going to vanish; sp 

this is going to now contribute. So, this gives us… 
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So, this is what we obtain and if you simplify this by taking inner product on both sides 

with sine k pi x over l, we can write this as… So, using orthogonality, we multiply this 

by sine k pi x over l and integrate over the domain of the beam which is from zero to l; 

now on account of orthogonality, taking this inner product is going to filter out the k
th

 



term in this expansion. So on the right hand side, as we are multiplying this Dirac delta 

function with sin k phi x over l and integrating, this x gets replaced by this v t. So, then 

we can rewrite this. Now by I am dividing throughout by rho A; so, this j power four phi 

power 4 by l power 4 EI by rho A that is nothing but square of the k
th

 circular natural 

frequency of the beam. So, this defines the dynamics of the k
th

 modal coordinate and this 

can be written out for all the modes. So, we have the dynamics of all these modes. So, 

here of course… Now, this is a forced vibration problem for discrete system. Now, you 

see all these modal coordinates are decoupled. So, they can be solved independently; and 

we know the general solution for this system. So, we can easily the write the general 

solution for pk and construct our solution of the beam. Now, here you can note that it is a 

harmonic forcing. So, the frequency of the harmonic forcing, let us name it omega 

indexed with k, so, that is the circulate frequency of the harmonic forcing. Now, there 

can be velocities for which this harmonic forcing equals the natural circular frequency of 

the k
th

 mode. So, in that case, we will call this forcing as the resonant forcing. So, for 

resonant forcing for any k suppose, if you have this condition and from here we know 

that this is… So, we can find out the velocity for which the k
th

 mode is resonant. So, let 

us index this also with k. So, this is the velocity which will send the k
th

 mode into 

resonant. Now, for simplicity let us first assume that this is not resonant. So, for non-

resonant case, we can write the solution; so let me write the k
th

 coordinate. Now, this 

solution also satisfies the initial condition of the beam which is it is undisturbed at t 

equal to zero. So, the initial shape as well as the initial velocity of the beam is zero. So, 

using this solution, therefore… So, this is our solution for the response of the beam under 

a force travelling at a non-resonant speed; so which means the speeds do not take any of 

these values. Now, if the speed of travel is one of these resonance speeds, which are also 

called critical speeds; so if you have a force travelling at a critical speed, in that case the 

solution of this is modified which can be easily written out and we have studied this case 

for the string. 
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Now, let us look at this solution at certain time instant for two speeds, one is a low speed 

and other is a high speed transport over a beam. So, this figure shows snapshots at 

certain time instants for the force travelling on beam. So, you can see how the beam 

deflects at various time instants. Now, this is for low speed. 

(Refer Slide Time: 42:35) 

 

This figure shows the same thing when the speed is high. Now, here you can see a 

difference from the previous figure. In the previous figure, the deflection of the beam is 

completely on the negative side, below the equilibrium position. Now, here at certain 

time instant, this beam goes above the equilibrium line. Now, let us see this solution 



through animation. Now here, the velocity is, this is a low velocity that I have considered 

in this animation. So, you can see that the beam is always on the negative side. This 

black spot indicates the location of the force. The force is of course on the beam and this 

is of course an exaggeration of the deflection. Now, there are two things that has to be 

remembered when you see this animation. The first one is that this is the slow motion of 

what is happening. The second thing is that once this force leaves the beam, the response 

the beam is not shown in this animation. So, this is, this animation is looped and you see 

only the response of the beam when the force is on the beam and travelling on it at 

constant speed which is indicated below. Now, let us see what happens when we increase 

the travel speed. So, here v is l times omega 1 into pi over 4; so, this is the higher speed, 

higher than the previous situation. Now, you can see that here for example, the beam 

goes above. So, here beam is going above this the equilibrium line. Again this is the slow 

motion of what is going to happen. One more thing to notice in this solution which is 

different from the previous solution is that the deflection of the beam is much smaller in 

this case. Since, this force is travelling at a much higher speed, the beam gets less time 

for deflection; but this is what we observe when the force is within the span of the beam. 

So, you can again see, the disturbance propagating forward and it is reflecting back. 

(Refer Slide Time: 52:01) 

 

So, we have looked at these two examples related to the application of the modal 

solution. So, before we close this discussion, let us quickly look at one of the important 

properties of these Eigen functions which is the orthogonality. So, we have been using 



this property for all our calculations; but let us now formally look at this property form 

the equation of motion. So, let us consider a Rayleigh beam. So, for the Rayleigh beam, 

the equation of motion… So, this is the equation of motion for a Rayleigh beam; and 

along with this we have the boundary conditions. Let us say the boundary conditions… 

So, suppose we have simply supported boundary conditions. So when we do modal 

analysis, we search for the solutions of the form; so, we look for solutions of this form 

which is complex and separated in space and time. So, if you substitute this kind of 

solutions in this equation of motion, we obtain… So, this differential equation, where the 

prime denotes the derivative with respect to x; so this plus the boundary conditions, they 

complete the description of the Eigen value problem. Now, for a moment let us write this 

in a compact form, which this operator M… and the operator K can be represented in this 

form. 
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Now, let us write this for the j
th

 mode. Now, for the jth mode, this is going to satisfy this 

equation. For the k
th

 mode, this is going to satisfy this equation. Now, what we do, we 

multiply the first equation by Wk, the second equation by Wj; we subtract one from other 

and integrate over the domain of the problem. So, if you do that and simplify… These 

simplification steps we have discussed also previously. So, this is what we obtained. 

Now, if you use the boundary conditions of the problem, suppose simply supported, then 

this is going to be zero at both zero and l; and also the bending moment is going to be 



zero at both zero and l. So, these boundary terms, they all vanish if you use the boundary 

conditions. What you are left with… and this you can see… So, this is the orthogonality 

condition for the beam. So, you see that the Eigen functions are orthogonal with respect 

to the inertia operator. 

So to summarize, we have today looked at some applications of the modal solution in 

solving the initial value problem, and solving the forced vibration problem; and we also 

looked at the orthogonality conditions of the Eigen functions. So, with that we conclude 

this lecture. 

Keywords: modal analysis, initial value problem, travelling force, Eigen functions, 

orthogonality. 

 


