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On vibrations of beams; now before we discuss about vibrations of beams, we will 

discuss the beam models, the way to model beams as an as a one-dimensional as an 

elastic continuum in one dimension. So, what are beams? So, you already have lot of 

idea about beams, because this kind of structural element is so ubiquitous, and you find it 

everywhere, and you have studied about beams in mechanics. So, you all have some idea 

about the mathematical, some mathematical aspects of beams. So, how do we define a 

beam? Because beam is also one-dimensional elastic continuum, and we have also 

discussed about strings, which is also one- dimensional elastic continuum, so how do we 

distinguish between a string and a beam? Now, a beam is one is a one-dimensional 

elastic continuum, which can resist or transmit bending moment and shear.  
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So, beam can resist or transmit bending moment and shear, and it is a one-dimensional 

elastic continuum. So, this is a distinctly different from the definition of a string, which 

cannot resist bending; and such examples we have seen in our previous lectures. Now 



when we mathematically model beams, we must make certain assumptions; because first 

of all, we are considering it to be a one-dimensional elastic continuum, and we are also 

saying that it can resist bending moment. So, we must, in order to take care of these 

various things, we have some simplifying assumptions in our model, for our 

mathematical model.  

So, let us see what are these assumptions; the first assumption that we make is about the 

material, which is we will restrict ourselves to linear elastic material, which is of course 

and also homogenous and isotropic. The second assumption that we make is that the 

beam is slender. So, in today’s lecture, this will be an important assumption, under which 

there is this well known Euler-Bernoulli hypothesis. This Euler Bernoulli hypothesis 

holds. So, what this tells us is that suppose I have a beam, so this is a section of beam, 

and there is something called neutral axis, a neutral fiber; when this beam deflects, so it 

takes up shape something like this.  

So, if you take a section of this beam before deflection, a plane section of this beam 

before deflection, which is perpendicular to this neutral fiber and neutral axis, then in the 

deformed configuration, this section remains plane and remains perpendicular to the 

neutral deformed neutral axis. So, this is Euler-Bernoulli hypothesis. Then we make the 

final assumption in the model that we are going to discuss today, that shear is negligible 

or another way of saying this is that the beam is infinitely stiff in shear. So, we will 

assume that the shear strain in the beam is negligible, and another way of saying this is 

that it is infinitely stiff in shear. So, now we with these assumptions, let us get down to 

modeling of the beam. 
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So, once again let me draw this section of the beam. So, this is our neutral axis or neutral 

fiber. Now this is neutral, which means it is unstrained, it remains unstrained. So, this 

axis in the undeformed configuration and in the deformed configuration, it remains 

unstrained. So, once again let us consider this element, which upon deformation… So, 

this is an element which undergoes deformation. Let the depth of this beam or height of 

the beam we denoted by h, and once this beam deforms, let us assume that the radius of 

curvature at this point is given by… at time t. So, the radius of curvature at x, at time t is 

rho of x and t. Now let us look at this element; let us draw the free body diagram of this 

element. So let this element be of angle d theta, and this plane, so this is an exaggerated 

figure; so this angle is theta and the angular length is d theta. Now, let this be the neutral 

axis. 

Then at a distance z measured from the neutral axis or the neutral fiber, let us look at 

another fiber. So we can write, so first we are going to find out the strain in these fibers 

of the beam. So, as I mentioned that this neutral axis is unstrained. So, let us look at 

another fiber, which is at a height z from the neutral axis or the neutral fiber. Then I can 

write the strain as so the length of this fiber; so first I have to write the length of this 

fiber. Now this radius of curvature is rho, so length of this fiber can be written as, so 

deformed length of this fiber is rho minus z d theta. So, that is the length of this fiber. Its 

undeformed length before deformation as you can see, this is same as rho times d theta. 



So, since this length remains unchanged. So, this in the undeformed configuration was of 

the same length as this.  

So, therefore, its initial length was rho times d theta and the initial length, so therefore, 

this turns out to be… Now 1 over rho, 1 over the radius of curvature is known as the 

curvature, and the expression of the curvature in terms of the equation of this neutral 

fiber, so if you represent this equation of this neutral fiber in terms of the deflection of 

this neutral fiber from the undeformed neutral fiber, so w(x,t) is the displacement of this 

point from the from the undeformed configuration. So, the equation of this curve is given 

by w(x,t) at any time t. So, in terms of the equation of this curve, the curvature as you 

know can be written as the double derivative with respect to x of w divided by 1 plus del 

w/ del x whole square rise to power 3 over 2.  

Now we have consider that, we will consider a in these derivations that the slope of the 

beam is small. So, under that assumption, we can neglect, we can drop higher powers of 

the displacement variable w or the derivatives of the displacement variable or the field 

variable; we can drop the higher order terms and we can write the strain in this fiber as 

minus of z times the second derivative with respect to x of w. So, w is our field variable. 

So this is under the assumption that… So, we make this assumption that the slope of the 

beam at any location is much smaller than 1. So, under this assumption, our strain 

simplifies to this expression. 

Now, so this is the strain in this fiber at a height z measured from the neutral axis, and 

thus we have the strain in terms of the deflection of the neutral axis, which is what we 

are going to track, when we represent the deflection of the beam. So, the deflection of the 

beam will be represented in terms of the deflection of its neutral axis. 
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So, once we have this expression of strain, we can write, we can bring in the constitutive 

relation using Hooke’s law; and we can write the stress in the fiber at a location x at time 

t… So, this is the axial stress or stress in the in the axial fibers of the beam at a location z 

measured from the neutral axis. Now we have… So, this stress as you can see here is 

linear in z. So, let us consider a cross section of this beam. So, this is the neutral fiber 

plane, and if you represent the stress, then… so if z is positive, we are measuring z from 

the neutral axis positive upwards.  

So, now what we want to find out is the moment that comes, because of this stress 

distribution on the cross section of the beam. So, moment at any location x, at any time t 

will be given by… So, if dA is a little area, elemental area on this cross section, then the 

force acting on this area is given by sigma times dA and the moment, moment about the 

neutral axis. So, we are going to find out the moment about the neutral axis, because of 

this stress distribution is given by… So, this arm, so z cross this force and if you do that 

calculation that turns out to be negative of… and this has to be integrated over the total 

area A.  

So, if you now substitute these expressions, so this negative and this negative turn out to 

be positive. Now Young’s modulus and the curvature, the approximate curvature does 

not depend on this area integral. So, that can come outside and what we have here is… 



where I, this is known as the second moment of the area about the neutral axis. So, this is 

the moment that is acting on this cross section. 
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So, now let us once again look at the free body diagram of this little element of the beam 

and introduce the interaction forces. So, we have the shear forces at these faces and the 

bending moments. So the sign convention what we follow, so this is the positive shear, 

force and bending moment; and this, so this is the undeformed neutral axis. So, this 

deflection is w(x,t),. Now let me write down the transverse dynamics, the equations of 

transverse dynamics of this little element whose free body diagram, I have drawn. 

Now, so from Newton’s second law, if rho is the density of the material, and if A is the 

cross sectional area at this location x, then rho times A is the mass per unit length. So, 

into dx, which is the length of this element, then this is the mass of this little element, 

times its transverse acceleration must be equal to… So, I can write… where what I have 

indicated before, so this angle is d theta and this angle is theta. So, I have taken 

projection of these forces in the transverse direction, and if you divide by dx and 

consider that cos theta is approximately equal to 1, then… So, this is the equation of 

transverse dynamics for the beam element. Now along with the transverse dynamics, 

now I will also write the rotational dynamics.  



So if rho is the density of the material, and if I is the second moment of area about the 

neutral axis, then rho times I gives us the moment of inertia of this element about this 

axis which is perpendicular to the plane of the paper. This is per unit length, moment of 

inertia per unit length times dx will give us the moment of inertia of this element times 

the angular acceleration; so, the angular acceleration can be written as the double time 

derivative of this angle theta of the element and this must be equal to the sum of all 

moments about the center of mass of the element. So, we are writing the rotational 

dynamics about the center of mass. So, that turns out to be… 

So, this implies upon dividing throughout by dx… Now, this theta is somehow 

represented in terms of w. Now, we know that this tan of theta for small slopes is almost 

equal to sine of theta which is almost equal to theta; and tan of theta is nothing but the 

slope of the beam. So, therefore theta is approximately the slope of the beam. Therefore 

from here, I can rewrite this equation as… Now you see in these two equations, the 

bending moment M, we have represented in terms of the stress and which was calculated 

in terms of strain, and which was calculated in terms of the deflection of the neutral axis 

our field variable w. Now this V, which is the shear force is determined from these 

equations of this equilibrium, because this element is not shearing. So, this has to be 

determined from the equations of equilibrium and that is what we have in these two 

equations. So we will eliminate this shear force between these two equations, and if we 

do that… 
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So, this was del V/del x. So, this is… and moment, the bending moment we have 

determined this… so therefore finally… So, if I rearrange this equation… so this is 

finally our equation of motion of the beam. Now here this term is known as the flexure 

term; this term is the rotary inertia term; and this is the normal transverse term or 

translation inertia term. So, this model of the beam is known as the Rayleigh model of 

the beam or Rayleigh beam model.  

So, in the Rayleigh beam model, we have inertia term, the flexure term and the rotary 

inertia of the element. For very slender beams, this term can be neglected and in that 

case, this is known as the Euler-Bernoulli beam model. So, the Euler Bernoulli beam 

does not have this rotary inertia, which is present in the Rayleigh beam model. Now 

when you have forcing, then instead of this zero on the right hand side, you have the 

force distribution. So, these are two very simple models for beams. Next, we are going to 

discuss the variational formulation for beam dynamics.  

So, as we have seen before that this variational formulation gives us a very powerful 

alternative way of deriving the equations, and not only that we also get, the we have 

which we are not talked as yet, which are the boundary condition. So, we will also get 

the boundary conditions, the possible boundary conditions for the problem, and this 

variational formulation also leads us or gives us some very powerful techniques for 



approximately solving, discretizing the equations of motion as we have seen in our 

previous lectures.  
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So, let us discuss the variational formulations for the beam model. Now so, the first thing 

that we do in this variational formulation, we write down the kinetic and potential energy 

expressions. So, the kinetic energy of beam can be written as the translation kinetic 

energy, so rho A is the mass per unit length, so into dx will give us the mass of a little 

element, times the velocity square. So, that is the translational kinetic energy plus, so this 

gives us the second moment of the moment of inertia of the little element, times the 

angular velocity square and half, and this when integrated over the length of the beam 

will give us the total kinetic energy. Now using this approximation, we can now rewrite. 

So, that is the kinetic energy expression of the beam element. Now the potential energy 

of the beam can be, we know that the potential energy per unit volume is for a linearly 

elastic material is given as half the stress times the strain; so over the volume, so dA is 

the small area of the cross section, and dx is the small length of the element. So, if we 

integrate this over the area and over the length, then we should have the potential energy. 

Now if you insert the expressions of stress and strain in this expression, then this is what 

you are going to get; and therefore, there is of course this one half. So, this Young’s 

modulus and curvature square this will have nothing to do with this area integral, so they 

can come out and what we have is z square dA integrated over the area, and that we 



already know is the second moment of the area about the neutral axis of the beam. So, 

these are the expressions of the kinetic and potential energies.  
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Now, when we derive the equation of motion using the Hamilton’s Principle we write it 

like this mathematically; so this turns out to be… So, this is the statement of the 

Hamilton’s Principle. So, when you take the variations… Now, we will integrate by 

parts, this term with respect to time, this term once with respect to space, and once with 

respect to time, and this term twice with respect to space. So, if you do that and 

rearrange, then what you are going to obtain… So, when we integrate by parts with 

respect to time, this term… so and this term once with space and once with time; so let 

me first integrate with respect to time and this I have to integrate with respect to space. 

So, this will get a derivative with respect to time with a negative sign, this will get 

similarly then you can check, so this, these are the boundary terms and… So, this is what 

we are going to get. Now, here as we know that the variation must vanish at these two 

time points, so these terms will vanish. So, we will be left with this as a boundary term. 

Now, here still we have this space derivative which we can once again integrate by parts 

with respect to the space and if you simplify… So, these terms are going to vanish. Now, 

if you integrate by parts once again and do these simplifications, then you can check… 

So, these are the boundary terms and… so this is what we are going to get. 



Now we invoke our statement of the variational formulations, which says that the 

boundary variations and the variation over the domain, if this whole thing has to vanish, 

then these two must vanish individually. So the integrant must vanish for arbitrary 

variations over the domain, and that as you can see will give us the equation of motion. 

So, this integrant is going to give us the equation of motion, but we had been derived 

before; now look at the boundary terms. So, equation of motion, we have already written; 

let us concentrate on the boundary terms.  

(Refer Slide Time: 50:51) 

 

So, so here we can have… So, these are the boundary terms. So, we can have this at zero 

to be zero or we can have the slope at zero to be zero are fixed, then at l again or and 

these two are connected by an And; so, you can have this and this or this and this or this 

and this so combinations. So, this is from the first boundary term; from the second 

boundary term, which must again be connected with an And or so here we have this 

displacement And… so these are the possible boundary conditions.  

So, this as we can recognizes the bending moment just zero or the conjugate of the 

bending moment is the angle with the deflection that must be zero or this is the shear 

force, now this is an additional term, because of rotary inertia. So, this must be zero or 

the displacement, which is the conjugate of this, by conjugate I mean, the product, which 

give us energy or work. So, either force or its conjugate this is displacement is zero, 

either moment or its conjugate the angular displacement must be zero; now this set of 



boundary conditions are the geometric or also known as the essential boundary 

conditions, and this set is known as the dynamic boundary conditions. 
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Now, let us quickly look at an example. So, we know that we have simply supported 

beam like this. So, the boundary conditions here, and the bending moment… Similarly 

here, you again have the deflection to be zero. For cantilever beam, the boundary 

conditions here, deflection zero and you know that slope is also zero. Here we have the 

shear force, and the bending moment to be zero. So, these are two examples that we have 

considered, where we have written out the boundary conditions. There can be other 

examples and we will discuss these in the subsequent lectures.  

So, what we have discussed today; we have looked at some models of beams transverse 

dynamic of slender beams; and we have derived the equation of motion for the Rayleigh 

beam and Euler-Bernoulli beam; and we are looked at the variational formulation from 

where we can also derive the equations of motion. So, we will continue this discussion in 

the next lecture. 
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