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So, we are discussing in the last few lectures, we have been discussing about wave 

propagation in one-dimensional continuous media; and we have looked at the 

d’Alembert’s solution and the initial value problem; and when we look at the behavior of 

a system under some initial conditions; for example, we have looked at a string with 

initial velocity condition or a string on which there is a traveling force. So, we have 

observed that the behavior of the string looks like a transient behavior, there is a, the 

motion is not continuously changing as we would see with our naked eye, it seems that it 

is almost continuous. But then when we look at this motion in slow motion, then we find 

that the motion is little different; it seems like a transient motion, there is some 

propagation of information back and forth in the in the medium, in the string or in the 

bar. So, today we are going to look at this phenomenon of scattering of waves, and this 

will help as in understanding what happens when a wave front goes and hits a boundary 

and or an obstacle or an impedance for example. 
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So, we are going to look at scattering of waves. So, scattering can take place at 

boundaries or obstacles, it can take place at impedance - some finite impedance, let us 

say boundary damping or I mean it can take place at defects, so, which are defects or 

phases. When there is a difference of phase inside a material, then scattering will take 

place; and this scattering is used is of great practical importance for characterization and 

evaluation in non destructive evaluation of materials.  
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So, let us start with scattering at a fixed boundary. So, we will study this problem with 

the help of the example of a string - a semi infinite string. So, here we have a string 

which is fixed at this boundary, and we consider that harmonic wave is incident from 

minus infinity. So, positive traveling harmonic wave is incident at this boundary; and 

then this wave comes and hits this boundary, there must be a reflection, because the 

material ends here. So, there must be a reflection.  

Now, we are going to consider an incident wave which is represented by… So, this is the 

amplitude of the incident wave and this is the space time evolution. So, this the positive 

travelling wave. Now, when this wave reflects, let us consider that the reflected wave is 

represented by… Now, here I have used k and omega for the incident wave, the wave 

number and the circular frequency of the wave, whereas for the reflected wave I am 

using k prime and omega prime. Now, this medium is the same.  



So, we must have as we have seen in our previous lecture that this k must be equal to 

omega over c, and similarly, k prime must be equal to omega prime over c. Since the 

medium is the same the wave speed in this direction or this direction must be the same. 

So, the wave speeds must be the same. So, k prime and omega prime are related by this 

relation. So, the total wave field in this string plus the reflected wave. Now, what I am 

going to do is, represent this amplitude of the reflected wave which is BR as a coefficient 

of reflection times BI and there is this exponential power. So, here I am introducing, this 

is the coefficient of reflection. So, here we have this coefficient of reflection.  

Now, the boundary condition at this fixed and is of course, this must be zero. So, when I 

substitute this total wave field in this boundary conditions condition, this gives me… 

Now, this relation has to be satisfied for all time for all time t and that is possible if and 

only if… So, this condition is required, so which means that the frequency of the incident 

wave must be equal to the frequency of the reflected wave. Now, immediately using this, 

here we find that… Therefore, k prime must be omega by c and that is equal to k. So, 

which means that the wave number of the reflected wave must be same as the wave 

number of the incident wave, since the frequencies of these two waves must be the same. 

So, once we put this condition here what we have is… That implies CR is minus 1, 

because the other part is not equal to zero. Now, this can also be written as… So, minus 

1 - the reflection coefficient minus 1 can also represent as exponential i pi which tells us 

that there is a phase inversion; so, the phase change of pi. So, the reflected wave suffers a 

phase change of pi. So, the CR equal to minus 1 implies that the wave undergoes a phase 

change of pi. 
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Now, if you consider a general wave form for the same reflection process from a fixed 

boundary, then we have the field - the wave field represented like this as we have done 

before. Now, the boundary condition again is… and that implies… So, this is plus. So, 

this must be zero. So, what we therefore have is g of z, let me write c t as z is equal to 

minus of f of minus of z. So, which means that our solution, the total wave field 

becomes… Now, let us see, what is this, minus of f of minus z. So, suppose this is the f 

of z, then f… So, minus of f minus z would be… So, if this f of z, then this is minus of f 

of minus z. So, the total wave field is superposition of these two traveling waves now, 

one in the positive direction and the other in the negative direction. So, let us see this. 
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So, consider that there is this incident wave at this boundary. So, this is f of x minus c t. 

So, this is moving towards the boundary, and imagine that there is a wave which is 

minus of f of minus x minus c t. So, this is traveling in this direction, the same wave 

speed c. So, superposition of these two is going to give us the net wave field in the string.  
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So, here I have shown some snapshots of this reflection phenomenal at a fix boundary. 

So, this is the incident wave and this is an imaginary wave which is propagating towards 

the left. Now, the superposition of these two waves… So, this solid line shows the actual 



configuration of the string. So, as time progresses, so, you finally have this is the 

reflected wave which is traveling in the negative x direction. So, here I show an 

animation. So, the wave pulse appearing from traveling towards positive x direction from 

minus infinity hits this fixed boundary at x equal to zero and gets reflected. So, the figure 

here - the above figure, I have shown what is actually observed. So, that is how you will 

observe the string to behave. Here, I have shown this superposition of the two waves 

which is giving the same solution. So, the second figure below shows this superposition 

of the two waves coming from two directions. So, you will find that these two 

superposing waves do not satisfy the boundary condition at x equal to zero. But after 

superposition the sum of these two waves satisfies the boundary condition. The 

individual waves do not. So, that is how this reflection process takes place.  

Now, in a previous lecture, we have discussed this initial condition on a string - initial 

velocity condition on a string and we have observed that when we provide an initial 

velocity condition distribution, then we find that this is the front, that is propagating and 

at the boundary again it reflects back. So, let me let me show this, what happens around 

this boundary. So, in this next animation here, what we observed is, there is a wave front 

which is appearing; the front is traveling towards the positive x direction, and it hits the 

boundary and gets reflected. Now, this reflection process is shown in the figure below. 

So, here we find that there is a front propagating which is this red dashed curve, and 

there is a negative propagating inverted wave which is because of the reflection, as we 

have discussed just now.  

So, the superposition of these two waves is creating the reflected waves. So, the front 

comes hits the boundary and is reflected back. So, what we observe is that as the wave 

comes, it hits and then there is this the reflected wave is the superposition of these two 

waves that we have just discussed. Now, one is the incident wave, the other one was the 

reflected wave. The reflected wave is inverted as well as it there is the mirror image 

created. So, we have minus of f of minus z. So, f minus z is the mirror and minus f gives 

us the inversion. So, there is an inversion as well as the reflection. So, that is what we 

have observed. 
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Now, let us look at this case of a fixed-fixed string. Now, when you have a pulse which 

is traveling to the left let us say, then it hits this fixed boundary, and you have a wave 

that is the reflected wave is like this. This reflected wave goes this positive traveling 

wave now, goes and hits the right boundary and there is the negative traveling reflected 

wave. So that then completes the full cycle. So, the time taken, here I have written out 

the time taken by this wave to travel this whole part. So, if we mean that the time period 

is 2l over c. So, let us see the time period is 2l over c. It takes this much of time for the 

pulse to once again repeat itself. 
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So, this from here, we can estimate the fundamental frequency - the circular frequency 

which is 2 pi over T which is pi c over l; and this is the fundamental frequency or 

fundamental circular frequency of fixed-fixed string. So, the frequency of a finite system 

can be estimated or calculated based on this wave reflection process that we have just 

studied. So for the fixed-fixed string, we have been, we will do calculate the fundamental 

frequency.  
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Now, let us look at this example of reflection at a free boundary. So, for this we will 

consider a uniform bar. At any point x of the bar, we have this actual displacement. So, 

this is the field variable u of x and t. So, again we have this incident wave at… So, this is 

the free end now. This is the free end. So, this is an incident wave given by this and since 

the material ends here, there must be a reflection. So, this we are going to once again 

represent as reflection coefficient times - BI times a negative traveling harmonic wave; 

and what we learned from the previous example, these k and omega must be the same as 

we have seen in the previous example. So, the total wave field in the bar is given by this 

expression.  

Now, the boundary condition, so, this is the free boundary. So, for a free boundary, we 

know that is a force free or a natural boundary condition. So, once you substitute this 

wave field in the boundary condition… and since… So, this… This time function this 

will not be zero. So, this has to be satisfied for all time. So, this would imply upon 

simplification… So, CR - the reflection coefficient this time is one and one is nothing but 

exponential, you can write it like this. So, this tells us the reflected wave suffers no phase 

change. So, it is reflected as it is. Now, you can perform the same analysis, what we have 

done in the previous example for a general wave front. So, if you consider… and use this 

boundary condition, then you will find that the reflected wave can be represented by… 

So, which means that g of z is actually f of minus z. Now, if you recall that for a fixed 



boundary g of z was minus of f of minus z and as we have seen f of minus z is just the 

mirror reflection of f of z, f of minus z is mirror of mirror reflection of z. So, there is no 

inversion of the wave as we have seen, there is no phase change.  

Now, here in this animation, we see a wave pulse traveling from minus infinity towards 

the positive x direction; so, positive traveling wave pulse getting reflected at a free 

boundary. So, once again the figure above is what we observed and the figure below 

shows this superposition of these two traveling waves. So, you can see that the reflected 

wave is nothing but a mirror reflection of the incident wave; and these two waves 

superpose to give us the motion of the bar and it could be a bar, it could be a string with 

free end. If it is a bar, remember that this value of the displacement is actually the axial 

motion of the bar. So, we have observed here for the free boundary case, there is only a 

mirror reflection at the boundary.  
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Now, this shows another example where we have applied what we have just now seen. 

So, this is the free and fixed string. So, this is the sliding end and this is the fixed end of 

the string. Now, consider once again the pulse traveling to the left and from this free end 

it is being reflected like this. So, this is the reflected wave that goes to the fixed and it 

gets reflected. So, there is the mirror reflection as well as the inversion. So, that wave 

comes in and once again gets reflected like this which again gets reflected from the fixed 

boundary; and now we come back to the initial state where we started with. So now if 



you calculate which is given here, the total time that it takes; so, in this case, you have a 

time period of 4 l over c; so which means that the frequency - the circular frequency is 2 

pi over the time period, so, which gives us… So, pi c over 2 l; and this is nothing but the 

fundamental circular frequency of a fixed free string or fixed free bar.  

So, we have looked at these two examples of scattering at fixed boundary and scattering 

at a free boundary. Now, we are going to look at, we are going to generalize this, we are 

going to look at scattering at a boundary with finite impedance. Now, fixed boundary has 

infinite impedance, free boundary has zero impedance in a in a certain sense. So, what 

we are going to now look at is scattering at a boundary with finite impedance. 
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So, this case arises when you have, let us say boundary damping or you have internal 

phases in a material or even defects then you can have scattering at finite impedance. 

The third case occurs when you have radiation damping. So, we are going to look at, so 

these are the situations where you can scattering at at finite impedance.  
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So, we are going to look at these situations with the example of a uniform bar which is 

made up of two materials. So, we have… So, this is the junction. This material 1 has 

material and geometric property like this. The material 2 is like this. Now, we consider 

that there is an incident wave from the left. So, the right propagating harmonic wave 

which we will… Now, here I am introducing the wave number k1 in this material, in the 

material 1, I am introducing the wave number k1, and then there is a reflected wave 

which will have the same wave number k1, only thing is the negative traveling wave. 

And there is a transmitted wave that propagates the material 2 which we will indicate 

as… Now, this wave number is k2, and observe that I have taken the same frequency as 

you know the frequency has to be the same what we observed from our previous 

calculations. Even if you consider them as different, you will come to the same 

conclusion that this frequency must be the same. This comes from the material 

continuity.  

So, you must have this frequency is same, but the wave numbers may be different. Now, 

as you know these two different materials, the wave number and the frequency and the 

wave speed in these two materials are related like this. So, C1 is the speed of axial waves 

in material 1, which is given by… and similarly for material 2, we have this relation. 

And here we have this as the coefficient of transmission. So, CT is the coefficient of 

transmission, CR is the coefficient of reflection. Now therefore, the total wave field in the 



in the in material 1 is given by… So, this is the total wave field in material 1. Similarly, 

the total wave field in material 2 is nothing but is transmitted wave.  

Now, at this junction we must have some junction conditions. So, the first junction 

condition comes from the continuity of the material. So, this junction should not break. 

So, the material continuity has to be maintained at the junction. So, there are two 

junction conditions. So, the first one is material continuity or continuity of displacement, 

and the second one comes from Newton’s third law which says that the force must be 

continuous equal and opposite of this junction, so continuity of force. So, let us write 

down these junction conditions. So, displacement junction condition tells us… So, the 

displacement of material 1 must be equal to the displacement of material 2, and the force 

continuity can be written as… So, this is the force on the material 1 that must be equal 

to… 
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So, these two conditions when we substitute our solution or the wave field in these two 

junction conditions; so, let us see first the displacement condition. So, if you substitute in 

u1. So now, all these frequencies have to be same as we have already assumed. So, this 

implies… So, this is the condition that we get from the continuity of displacement. 

Similarly, from the continuity of force, if we do the same calculation then… you can 

easily obtain… So, this which can be written like this, where we have used this omega 

over k as C1, omega over k1 as C1 and E as rho1 C square, E as rho1 C square. So, one C 



square comes extend the denominator. So, this becomes rho1 C1. So, this is the condition 

that we obtain from continuity of force. Now, using this two we can where easily 

calculate the reflection coefficient. So, this is the reflection coefficient and similarly you 

can calculate the transmission coefficient. 

So, we have calculated the reflection and transmission coefficients. Now, let us make 

some observations based on this. You will find that you see this... So, this transmission 

coefficient is non-zero. So, which means some part of the incident energy is always 

going to go in to material 2. Now, this reflection coefficient can be zero, only when rho1 

C1 equals rho2 C2. Now, this can happen in various ways, one is there is a single 

material, the material is the same. So, there is no reflection that is very obvious. Now, 

this rho1 C1 can be written as… So, if we have two materials for which if rho1 E1 is 

rho2 E2 then the reflection is zero. But this is hypothetical situation, a theoretical 

possibility that this product is same for two materials, but that may not occur in nature. 

So, when we have this junction of two materials, there is some transmission, there is 

some reflection. Now, this case is an important example for certain applications. For 

example, when we do ultrasonic testing of materials, then we have ultrasonic transducer 

which we put on samples; and we expect that this ultrasonic wave will propagate within 

our sample completely; I mean there should not be any reflection at the transducer 

sample interface. So, let us look at this. So, this is same. So, we have this transducer 

sample interface and we do not want or we want that all the waves that we generate here 

should enter in to the sample. There should not be any reflection right from the interface. 

So, what we usually do in this case is we put thin film of the third material. So, the 

scheme is like this, here we have a third material at this interface. So, this is material 1, 

this is material 2 and in this we have the third material, and we can adjust the thickness 

of the material. So that, there is only transmission and no reflection; we can adjust the 

thickness, so that there is no reflection. So, there is complete transmission. So, this is 

very useful for such applications.  
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Now, let us consider a second example of scattering an impedance. This example we 

have seen before. So, this is the bar - a semi-infinite bar with boundary damping. So, 

once again we have an incident wave, reflected wave and we consider that this damper 

has damping coefficient d. So, the total wave field is given like this. Now the boundary 

condition is… So, this is our boundary condition at x is equal to zero. Now, when we put 

this expression the wave field in the bar in this boundary condition, you can easily arrive 

at this expression. So, from here we can calculate the reflection coefficient like this.  

Now, we observe some interesting things. When d, the damping coefficient of this 

dashpot equals rho A C, the reflection coefficient goes to zero, which means there is no 

reflection in the bar. So, the wave comes and gets completely observed in the damper. 

Now, what is this value - this special value of d? As you if you re-call then the 

impedance of a semi infinite bar is also the rho A C. So, what this wave feels is that there 

is semi infinite bar attached at this point. So, as it this bar has been extended up to 

infinity. So, the whole wave goes into that. So, it gets completely observed at this 

boundary for this very special value of the damping coefficient. So, this is the reason, 

why when we did this modal analysis or when we solve the Eigen value problem for bar 

with boundary damping, we found that for very special value of this dashpot, there are no 

Eigen frequencies or Eigen values. So, now we understand that the Eigen frequencies or 

Eigen values, the concept of modes, this occurs only when we are finite system. But 



now, this special value of damping has almost made the bar as infinite in positive x 

direction. 

So, the concept of Eigen frequencies do not exist and the kind of solution that we assume 

for modal analysis does not hold. So, in such particular special values of this damper, we 

have a perfectly absorbing boundary, and which is sometimes very important in 

application. For example, if we want to observe sound in a room then you must design 

your the wall dampers or the observing material on the wall. So, that it becomes perfect 

observer.  

So, what we have looked at in this lecture, we discussed about scattering of waves at 

fixed at fixed boundary, at a free boundary and at interfaces with finite impedance, and 

we looked at some interesting results, and made some interesting observation based on 

what we discuss today. So, with that we conclude this lecture. 
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