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With this lecture today, we are going to start the second module of this course. So in this 

module, we are going to study the wave solution for continuous systems in one - 

dimensional. Now, why should we study this wave solution or what is commonly known 

as d’Alembert’s solution? So, to look at the reason, let us make quick recapitalization of 

what we did in modal analysis of continuous systems. 

So, let us consider the case of the string. So, what we had was this equation of the motion 

and the boundary conditions. Now, we search for a solution, which has a very special 

form. 
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So, consider this equation of the string along with the boundary conditions, fixed-fixed 

boundary conditions. So, what we have done; we have considered special solutions of 



this equation and the boundary conditions. So, here I show this equation of the string and 

the corresponding boundary conditions of the two ends. Now, we assume a solution 

which had the structure like this. So, we had a space dependent amplitude function 

multiplied by a harmonic function; this is in the complex form; and we can take either 

the real part or the imaginary part or a combination of these two parts as we have already 

discussed. For the problem of the string, for example, this is a self-adjoint problem as we 

have discussed. So, w, the amplitude function is real. So, we have a solution which we 

wrote as a combination of the real and imaginary parts of exponent of i omega. Now, we 

substitute this solution form in the equation of motion and what we obtained was the 

Eigen value problem, so, the Eigen value problem consisting of the differential equation 

as shown here and the corresponding boundary conditions. Now, for this Eigen value 

problem, we have a general solution which has a structure like this. Now, with this 

solution we are going to, we are going to put this solution in the boundary conditions. So 

when we substitute this solution in the boundary conditions, we obtain this vector 

equation. We have a matrix multiplied with this coefficient {D H} and that must be equal 

to a zero vector. Now for non-trivial solution for D and H, we put the determinant of this 

matrix to zero; and that gives us the characteristic equation which we can solve for the 

Eigen values; and putting back the Eigen values in this vector equation, we solve for D 

and H, we have the Eigen functions. So, the point to note in the modal analysis is that we 

obtain the Eigen values and Eigen functions when we have the boundary conditions, this 

and this. So, in our original equations, these are the boundary conditions. So, if we do not 

have boundary conditions, then what happens? So there can be many situations when we 

may not have the boundary conditions or the boundaries are so far away that we can 

consider, for short time interval, the system is infinite. So for the systems with infinite 

extend, therefore, we do not have these boundary conditions; and therefore we do not 

have the modal solutions. So, which means we do not have Eigen values and Eigen 

functions as we have discussed in the modal analysis; and you can remember that in most 

of the approaches we have used till now, we have used this modal expansion technique 

to solve the system, for initial value problem, for forced vibration problem. So for 

various kinds of problems, we have used the modal expansion for solving the problem. 

Now, once we do not have these modes, the Eigen functions in the conventional sense, 

how do we go about solving the system? What kind of solutions should we expect for 

such systems? Now in the course of our discussion, we also came across a problem in 

which we did not find Eigen values. So, this is a system that we have discussed before in 



which is a bar, a fixed bar and the free end of the bar is connected to a damper which is 

fixed to the support. Now, we have this equation of motion and the boundary conditions  

as shown; and for this problem remember we have obtained a characteristic equation. So, 

this is the characteristic equation where this gamma is related to the Eigen value of the 

problem s and a is a constant which is defined in terms of the speed of propagation of 

axial waves, the damping, and the material properties and geometry of the bar. Now you 

see that when a equals to one there is no value of gamma for which this characteristic 

equation can be satisfied. It must be minus infinity; so there is no finite value of gamma. 

We will say that there is no existence of an Eigen value when a equals 1 and a equals 1 

when this this damping coefficient d takes on this very special value EA over c. So, for 

this problem, we did not have Eigen values. So, this is another problem, where the... and 

it is very similar to the problem of an infinite system or semi infinite system for which 

we do not have this Eigen values and Eigen functions. So, what we find is that there are 

situations, where you may not have or the modal solution does not exist, because either 

system is infinite or because of very special situations or parameters in the system, the 

Eigen values should not exist. 
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Then we also discussed the case of a travelling string. So, if you look at the travelling 

string, then we had the solution of... I mean general solution that we obtained in our 

previous discussions. We obtained a general solution which look like this, what I have 



put on this slide. So, here you can see that the space part and, the space and the time they 

are not separable as we have seen in the modal solution. 

So, even if you take one of the modes, say for example n equals to 1, then also you will 

see that this is not separable; the solution not separable, which is not the case for, say the 

static string. So, here we say that this problem is non self adjoin and the solutions are of 

very special type. 
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So, let us look at the solution for n equals to 1, I have put this solution for n equal to 1 

and v over c as 0.4. So, you can see that the characteristics of the modal solution, that we 

have all discussed where in the previous lectures; so, that is not there. So, you cannot... 

for example, the string does not pass through the equilibrium point; all points of the 

string do not pass through the equilibrium point at the same time. 

So, there is a propagation of this; there is a propagation of disturbance that you can 

possibly see in this. Then two points of the string are neither and they neither have phase 

difference of 0 or pi. 

So, that was another characteristic of the modal solution that is missing in this solution. 

So, this is another example. So, this is a finite system, this system is finite. Yet we see 

that our solution does not satisfy, even for this single mode, the solution does not satisfy 

the properties of the modal solution. Then we looked at in the forced vibration problem. 



If you recall, we looked at the string with travelling force. So, there we observed in the 

solutions very strange kind of behaviour.  

(Refer Slide Time: 13:19) 

 

So, let us look at it once again. So, this is the string on which a force is travelling at a 

speed v. 
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So, here I show you one of the solutions that we have discussed before. At a low speed, 

the force is travelling at a low speed, 10 percent the velocity of transverse waves in the 

string and you will find the string has very strange kind of motion; which looks like 



discrete. It remains almost static at a certain configuration for some times; certain 

portions of the string remains static at certain configuration unless a king, which brings 

in a new configuration changes the angle of the string or the solution of the deflection. 

So, if we look carefully, then you will find that there is a there is a king, which is 

travelling back and forth in the string. So, these are some… so this is another situation 

where you find that the solution there is a transient, there is a propagation of information 

back and forth in the string. Another example, we have again discussed this example 

before in initial value problem, where we talked about initial velocity conditions. 
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So, let us look at this once again. So, we have considered a string with initial conditions 

as shown here. So, initial displacement was zero, initial velocity was given a distribution 

like this. So, in the in the central one-fifth portion of the string, we have this velocity 

distribution like this. So, this is the velocity distribution displacement is still zero, but the 

velocity is distributed like this. 
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And let us look at the animation that we have seen before once this velocity condition is 

given. So, you see that seems to be a propagation of fronts in two directions, which go 

and hit the wall and then seem to come back and repeat itself. So, this is another 

example. So, all these are... So, in the time skill that we are looking at, these behaviours 

are transient behaviours. So, we have looked at various examples, in which we find that 

the motion of the system is in terms of propagation of waves in the system. Now, let us 

look at the modal solution of a normal taut string which looks like. 
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So, what we have seen is we have... So, we have all these examples; we can understand 

the behaviour of the system when we look at the solutions in terms of travelling waves. 

So, our motivation comes from these examples, in which we find that either the Eigen 

frequencies do not exist or we find that there are the solution is very strange in terms of 

travelling disturbance; and these solutions are also very important or this kind of 

behaviour is also very important in studying, let us say, defects in materials. 

So, if there is a wave propagating in a structure or in a material, then if we understand 

how the wave interacts with the boundary or with internal defects, for example, cracks 

etc. or different phases in a material, then we can say many things about the material or 

the structure. So, from various all these points of you, we are motivated to study the 

wave propagation solution for continuous systems. So, we would like to study the 

solution of continuous systems in terms of propagating waves. 
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So, let us look at the example. So, let us consider the wave equation. So, what we are 

looking at is this wave equation and we want to find out or determine the solution of this 

wave equation in terms of propagating waves. So to do that, let us write this equation 

like this. So you see, this equation can be… So, let me write it first in terms of this 

operator. Now, this operator I can factor. So, I can factor this operator like this. Now, for 

a solution, you can easily see that this equation is satisfied; whenever this or this is 

satisfied. So, let us first look at this equation. Now, you will find that the solution of this 



equation can be written as… If w(x,t) is some function, any function f (z), z replaced by 

(x-ct), if we substitute this function, of course, it has to be differentiable; so, if we 

substitute such a function here, then you find that this satisfies this equation. This can be 

easily checked by substituting here. Now, what is this solution? 
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So, let us visualize this solution. Suppose you have the function f(z) of this form let us 

say. Now, what happens, when I replace z by (x-ct); and let me plot with x rather than… 

so here, I am replacing z with(x-ct) and I am plotting with x, the function at different 

time. Let us say at time t equals to zero, I have f(x) which is same as this. At a certain 

time, what will happen, suppose t equal to let’s say 1 over c. So what we have at t equal 

to 1 over c is f(x-1). So, now I have to plot f(x-1). So therefore you find that the value at 

z equals to zero now occurs at z equal to 1. So therefore this pulse has moved a certain 

distance towards the right in time 1 over c; and it has moved a distance of one unit, so let 

us say this peak, if you track the peak it will be same as this, so this is one unit. So it has 

travelled a distance one unit in time 1 over c. So, the speed of propagation is 1 over 1 

over c which is c. So, the speed of propagation of this pulse is c. Thus, we observe that 

this solution represents a travelling pulse or a travelling wave in the positive x direction 

at a speed c. This is the reason why this c in the wave equation is known as the speed of 

propagation of the wave. So, this is travelling in the positive x direction at speed c.; and 

is a solution of this differential equation. Similarly, if you look at this differential 

equation, then the solution by the same argument, you can find is given by g(x+ct). So, 



in this case, the function or the wave pulse, which is represented by g(z), now travels in 

the negative x direction. So, these are the two solutions of these two differential 

equations. Now, it can be shown that the general solution of the wave equation can be 

written as f(x-ct)+g(x+ct). So, we have, so the general solution is therefore a 

superposition of two opposite travelling waves and both of these waves are travelling at 

same speed c. Now, let us look at this situation. So, this is, this represents x, this 

represents time t and this is the displacement or the field variable. Now, at time t equals 

to zero, we have this solution. At a certain time instant, let us say if this is positive 

travelling wave which means if this is moving in the positive x direction, then the 

situation is like this. At yet another time instant, the pulse has travelled forward. So, if 

you now track… So, this is the line on which, let us say the crest of this pulse is 

travelling. Similarly, this is the line at which this boundary of this pulse system. So, we 

can draw what is known as the space time diagram; and in this diagram, suppose this 

point was the maximum amplitude point here so x0 let us say. Next, this line tracks the 

peak of the wave and the equation of this line is given by this. So, this line is known as 

the characteristic of the wave equation. Similarly, it will have another characteristic for 

the negative travelling wave. So, this is another characteristic of the wave equation. So, 

we have both these two components in the solution, we have a positive travelling wave 

and a negative travelling wave, and the net solution is the superposition of these two 

solutions, so we can… This diagram is known as the space time diagram and the solution 

at certain point, therefore, depends on how these two waves, two opposite propagating 

waves, starting from t equals to zero reach this point; so this point at a certain t and at a 

certain position; so this is known as an event. So, the solution here will depend upon… 

So, these are the two characteristics; one is for the negative travelling wave and other is 

for the positive travelling wave. So, we will see very soon that the solution at the space 

time point depends on the initial conditions; so at t equals to zero what we specify are the 

initial conditions. So, the solution at this point in the space time diagram will depend 

upon the initial conditions given in this interval. So, this is x0 then this is x0-ct and this is 

x0+ct. So, when we determine, the initial value, when we solve the initial value problem 

in terms of the propagating wave, then we find the solution at this point is dependent 

upon the initial conditions specified in this interval, not what is outside this interval. So, 

in this space time diagram we can visualise various things. Now, this solution, we have 

written out, so this solution is known as the d’Alembert’s solution. So, this is the 

d’Alembert’s solution of the wave equation. So, this structure tells us or in clearly shows 



that we can think about any solution of the wave equation, in terms of positive and 

negative travelling waves. 
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So, let us see, then the modal vibration of a string. Now, we consider a normal taut string 

with fixed-fixed boundaries and we have obtained the solution, let us say in this form. So 

here so this is what is known as the k
th

 mode; and we recall that the circular natural 

frequency of the k
th

 mode is give by k pi c over l and this is the corresponding Eigen 

function. So, this product can be easily written using trigonometric identities. So, this 

modal solution for the k
th

 mode can be written, can be expressed as a super position of 

these two solutions. Now, here immediately we can recognize that this is the positive 

travelling wave and this is the negative travelling wave. So, we can decompose this 

stationary wave solution, in terms of travelling waves as you see here. 
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So, in this in this animation here you can see this decomposition. So, you find that... So, 

this… Here I have shown the second mode of fixed-fixed string and I have also shown 

the propagating waves, which are return below; and the black curve shows the actual 

configuration of the string. So, you can see for example, so this if you follow this crest, 

then this is the negative travelling wave and there is positive travelling wave, this is the 

positive travelling wave. 

Now, these two waves do not satisfy the boundary conditions as you can see, but their 

super position does. So, super position is shown in black. So, like this you can 

understand various modes of the string as super position of two travelling waves, one in 

the positive direction, the other in the negative direction; and these two waves do not 

satisfy the boundary condition as you can see. Now, how at these waves... these 

travelling waves what we are decomposing? How do we understand this the existence of 

these travelling waves? 

So, for that we have to look at the solution in detail and which we will do very shortly. 

So, let us recapitulate what we have studied today. We have looked at the travelling 

wave solution of the wave equation and we have looked at why we are studying these 

travelling wave solutions? So, what we have mentioned is that there are various 

possibilities or systems in which the Eigen values do not exists. For example, for infinite 

system or system in which the disturbance are not reached the boundary, may be there is 



an obstacle or there is the crack or discontinuity in the material, at which the propagating 

wave will have certain interesting characteristics or it will show certain interesting 

characteristics. For example, from boundary as we have seen in the case of an initial 

value problem that the wave front propagates and which is the boundary and then there is 

a reflection back. So, if we understand these interactions of the disturbance with 

boundaries with inclusions or cracks or discontinuities in the material, then we can 

evaluate the structure of the material. So, this is one reason why we are studying these 

waves’ solutions for of continuous systems. So, with and this provides with a very strong 

motivation for studying the wave solution. So, we are going to look at the initial value 

problem in terms of the wave solution in the next lecture. So, we conclude this lecture 

here. 
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