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Till now in this course, we have been looking at continuous systems which are 

stationary, which are fixed to the ground; but there exists a class of continuous systems 

with very unusual dynamic characteristics, which is due to its translation. So, we will 

consider today in this lecture, the dynamics of translating continua, translating strings. 

So, where do we find a translating continua? So, the common example is the travelling 

thread line in looms. In a travelling thread line, you have a string which is translating and 

it can have transverse vibration. So, this is one example of translating continua. The 

second example comes from cable car. So, in a cable car, there is a rope which carries 

the cable car or the gondola. So, the cable or the rope is travelling and the gondola or the 

cable car is attached to the strings. So, this forms translating continua or translating 

string. The third example is observed in rolling mills. So, in a rolling mill, material is 

being rolled and the material is constantly getting elongated and it moves at very high 

speeds and it can move between two rolls and or one roll; and then the dynamics of this 

material, which is being rolled, it may be a bar or a rail; so, that has to be studied with 

that motion, the axial motion of translation; that is imparted in this rolling mill. 
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Now, these are variety of situations, where we find translating continua; but we are going 

to look at very simple situation. We are going to look at a travelling string. So, we are 

going to study the dynamics of a travelling string. So, when we are going to study this, 

we will make all the assumptions that we had made for the string model. So, we are 

going to study the dynamics of travelling strings with the assumptions that we had made 

for studying the dynamics of normal strings. 
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So, let us look at this picture. Here, I have shown a string that is in translation; so this is a 

string; it is travelling at a constant speed v; it is passing through two inlets; and the 



length of the string between these two inlets is l. So, we are considering a one 

dimensional continuum, string which is translating. 
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So, let us look at the dynamics. So, we will derive the equation of motion of this 

translating string using the Lagrangian equation. So, let us write down, therefore, the 

kinetic energy of the string. So, if you consider the transverse displacement of the string 

at any location x as w(x,t), then if I draw this little element at location x; so this element 

has a displacement w(x,t) and it is moving at a speed v. Now, this angle, suppose this 

angle is theta; then we know that tan of theta is del w/ del x, is approximately equal to is 

sin of that angle. Now, I can write this kinetic energy as half rho times A times dx, is the 

total mass of this little element; and now, it has got velocity not only in the transverse 

direction, but also in the horizontal direction; and the transverse direction velocity is a 

combination of this del w/del t, which is the local time derivative and there is a there is a 

convective part, because of it is velocity. So, the transverse component, because of this 

velocity is v. So, if I write down, this is v sine of theta and this is v cosine of theta. So, 

therefore… plus v sine of theta, now sine of theta is del w/del x; so, this square plus v 

cosine theta whole square; now, with the assumption that del w/del x is small, v cosine 

theta can be approximated as this; and therefore, if I integrate this over the total length of 

the string, I have the total kinetic energy of the string. The potential energy is same as 

that of normal string. Therefore the Lagrangian is given by this expression. 
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Now, when we take the variation of this… So, here I have of course time integral; so this 

must vanish. Now, I integrate by parts, this term with respect to time, this term with 

respect to space and again this term with respect to space. So, this implies… This term 

has to be integrated with respect to space, and this term also with respect to space. Now, 

this term get derivated with respect to time, and there appears negative sign. So, we have 

these terms. Now, here by our standard arguments, at time t equal to t1 and t2 there cannot 

be any variation of the configuration. So, these boundary terms must vanish, time 

boundary terms. Now, here we have the special boundary terms. Now once again, we use 

the same argument; and we say that we can vary the domain independent of the 

boundaries and therefore they must individually vanish. If that is done, then we finally 

have the equation of motion. So, here we have one v additionally. So, these two terms 

add up to give us this two v w(x,t); and this term comes from here; and we have this 

additional term from the potential energy. So, this must be zero. Now, this can be 

simplified by diving by rho A. I will write it like… where c square is… Now, this is the 

equation of motion of the travelling string. Now, here, let us identify a few terms. This 

term is because of the Coriolis acceleration; while this v square del square w/ del x 

square, this term is the result of the centripetal acceleration. So, if the velocity of 

translation goes to zero, then these two terms vanish. Then you recover back the equation 

of motion of a normal string. Now, the boundary conditions are obtained from the 

boundary terms here. Now, these are the boundary terms. Now, these two can be 

combined; and for our case that we are going to consider, the boundary conditions are 



simply… and that makes the boundary terms zero in this case. So, these are our boundary 

conditions so, I have derived the equation of motion and the boundary conditions of the 

string. 
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:Let us quickly look at the string, once again. So here, I am drawing an element of that 

string. Let us quickly understand the equation of motion that we have just now derived 

from the Newtonian approach. So, in the Newtonian approach, what we need to do is, we 

need to consider a frame with this element. So, this is the tangential direction to the 

string and this is normal. So, this frame rotates. So, this angle is theta. The angular 

velocity of this frame, let us say omega, can be written as, approximately w,xt; so it is del 

square w/ del x t. So, del w/ del x is nothing but this angle, the rate of change of angle 

gives us the angular velocity. So, when we derive the equation of motion from the 

Newtonian approach, we must consider the motion of this element in a rotating frame. 

So, we must consider this Coriolis acceleration, normally we write two omega cross vrel. 

So omega is a vector perpendicular to the plane of this paper, and vrel the relative 

velocity with respect to this frame, which is at a location x. So, this frame is only giving 

the orientation, where it is located at x; it is not moving with the string. So, relative 

velocity is nothing, but v. So, if you calculate the Coriolis acceleration, then it is two… 

and this is the term, we find in the equation of motion. So, let me write down the 

equation of motion once again. So, this is the Coriolis acceleration term, and in addition 

to this we have the curvature of this element. So, this element is moving on a curved 



path; and the radius of curvature, so the radius of curvature can be written as 

approximately… so the curvature which is one over R is the double derivative of the 

space variable; this is well known; and the centripetal acceleration is given by v square 

over R; and that turns out to be… So, these two terms we find in our equation of motion. 

So, when we look at the Newtonian approach, we have to consider these two terms as 

now we have this element in a rotating frame. So, we have to consider these two terms. 

Rest of the Newtonian approach is same that we have followed for the string. Now, look 

at this equation. You see, in a fixed string we have the equation like this. So, this double 

derivative with respect to space also appears. This appears with c square minus v square. 

Now, there is a possibility that v might just equal c; in that case this term rubs out and 

remember, if this term rubs out; this term was responsible for the stiffness of the string as 

we have here. So, the double space derivative is responsible for the stiffness of the string. 

So, when the velocity, in the event when the velocity equals c, which is the speed of 

transverse waves in the string, then the string losses stiffness. So, this is unusual behavior 

that we see in a translating string. The second thing is this term, the Coriolis acceleration 

term, this has a single time derivative. Now, when we discussed damping, normally we 

had in the damping terms a single term derivative. So, the question might derives the 

whether this term is conservative or not. So, to see that will follow the procedure we had 

followed previously while discussing damping in continuous systems. We multiply the 

whole equation with the velocity and integrate it over the domain of the string; and this 

happens to be… This can be simplified and written like this. So, I can integrate over this 

spacial coordinate. So, we have this velocity square computed at l minus velocity’s 

square computed at zero. Since we have considered this fixed-fixed boundary, this turns 

out to be zero. So, this tells us that for the fixed boundary case, the translating string is 

conservative; rest of it, as long as c is greater than v, the rest is of is a conservative 

system. Now, this term, which is also conservative; so this does not contribute for the 

energy at all. SO, for the fixed boundaries, this term is conservative. So, there is a 

possibility that if the boundaries are flexible, then this system might be non-conservative. 
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Now, let us look at the modal analysis of the translating strings. So, our equation of 

motion… the boundary conditions as usual. We consider, as we have done before, the 

solution; we search for a solution with this structure, as we do in case of modal analysis; 

and if we substitute in this equation and rearrange then this can be written as… So, this 

therefore, is our Eigen value problem. So, this is our Eigen value problem for our 

problem. Now the first thing that strikes us is there is an imaginary coefficient with; and 

there is an imaginary coefficient and there is a single special derivative of W. Now, it 

can be easily checked that this problem is non self adjoint. Till now whatever systems we 

have considered they are all self adjoint. This is the first system which is not self adjoint 

which makes the dynamics of this system very interesting. The second thing is these 

Eigen functions, the Eigen functions are complex which we can easily make out from 

here. So, the Eigen functions are going to be complex. So, let us try to solve this Eigen 

value problem. 
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Now, for this kind of system, Eigen value problem, let us assume a solution with this 

structure. So, if you substitute in here, here I must point out this omega is circular Eigen 

frequency. So, this is quadratic in k and can be easily solved; and what we obtain… We 

obtain these two solutions of k. So, from this quadratic polynomial we obtain these two 

solutions. So, therefore our general solution of the Eigen function may be written as… in 

this form. So, this is the general solution of the Eigen function; and this must satisfy 

these two boundary conditions. If we substitute this solution in the boundary conditions, 

then we can write these two equations in a compact form and for non-trivial solutions, 

non-trivial solutions of D and E what we must have is the determinant of this matrix 

must vanish; and that gives us… So, this is our characteristic equation. This is our 

characteristic equation from which we are going to get the circular Eigen frequencies; 

and if you solve this the omega get indexed. So, these are the infinitely many circular 

frequencies of the string. So, from here you can easily see that if the translational 

velocity is zero then it reduces to the circular natural frequency of a normal string. Now, 

here we have c square minus v square. Again there is a possibility that this v might equal 

to c and you can well understand that when a system loses its stiffness, the natural 

frequency goes to zero. So, when v is equal to c, the natural frequencies go to zero; but 

what is interesting is all natural frequencies go to zero when v equals c. 
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So, here in this figure, I have plotted the circular natural frequencies with v over c. So, 

these are all non-dimensionalized. So, as you can see that for all the modes when v by c 

equals to one which is v equals to c, all the natural frequencies, the circular natural 

frequencies, they got to zero; and the variation you can see from this figure. This speed v 

equals to c is known as the critical speed. So, at the critical speed, the string, the 

translating string loses stiffness. Now, we have till now calculated the circular Eigen 

frequencies. Now, let us look at the Eigen functions. So, these Eigen functions therefore 

also get indexed; and if you substitute these omega n in here; so when you substitute 

omega n here and solve for D and E; and you use those values of D and E in the Eigen 

function expression; so this is straight forward; and you can check finally the Eigen 

functions are obtained. 
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Corresponding to the infinitely many circular natural frequencies the Eigen functions are 

obtained in this form. Now, here you can immediately see that this is complex. Here, D 

is an arbitrary constant which is used to normalize the Eigen functions. Here you can see 

that all the Eigen functions are complex. Therefore, we can write down our general 

solution using these Eigen functions and linearly combining; so we can write this as… 

So, this is our general solution where Bn and Cn are arbitrary constants which will be 

fixed from the initial conditions. So, here we can immediately observe that; first of all 

here we have used Dn as… So, Dn can in general be complex. So this is the general 

solution. This is finally our field variable. Here, you can see that the space and time, they 

are no longer separated. So, here they get combined here in these terms; and this 

immediately strikes us that this will make the orthogonality condition a little difficult. 

So, we have a strictly non-separable solution, even the modal solution, in a particular 

mode the solution is. So, in general the solution is non-separable even for a modal 

solution. So, this structure of the solution we will discuss later in this course. Here, the 

orthogonality of the solution as we have discussed till now in this course that does not 

hold. Here, it is replaced by something called Bi-orthogonality. Now, we have been 

using this modal solution, modal analysis for solving the initial value problem, forced 

vibration, damped vibration problem; and every one of these problems, we have to use 

orthogonality to solve the systems. Now, since the orthogonality is not trivial, it becomes 

little cumbersome to use the modal approach for solving various problems for travelling 

strings; but there is a convenient approach, which is using the Laplace transform 



technique. So, here I will briefly outline the Laplace transform technique for travelling 

strings. Now, in our forced vibration analysis, we had studied the Green’s function 

technique for solving these forced vibration problems; and we have seen that if we can 

find out the Green’s function of a system, then we can solve the forced vibration problem 

for harmonic forcing, for arbitrary forcing, general forcing as well as we can solve the 

initial value problem in a unified manner. So, therefore let us look briefly at this Laplace 

transform technique for travelling strings. 
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So, what we are going to do is, we are going to essentially solve the Green’s function for 

this system; because as we have seen that once we know the Green’s function of the 

system, then we can solve the forced vibration problem with general forcing; we can 

solve initial value problem etc. So, let us look at this problem. As we have discussed 

before with this kind of forcing what we solve is known as the Green’s function. So, 

once we know this Green’s function, we can solve various problems for the travelling 

string. The way to do this is, first we will take the Laplace transform of this equation. So, 

once you take the Laplace transform, you can easily check; so suppose I define this as a 

Laplace transform for the field variable W, then if I take the Laplace transform and 

simplify; this is straight forward. So, essentially we are giving an impulsive input at x 

equals to x bar and at time equals to t bar. So, this is the final equation in the Laplace 

domain where s is the Laplace variable. Now, you can solve this equation easily; but this 

can be further simplified if you use a transformation where alpha is… if you use this 



transformation in this equation, then this equation simplifies to… The boundary 

conditions, which are again obtained from here; you can easily see that the boundary 

conditions… for this in the transformed domain, the boundary conditions are the same. 
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So, this is the boundary value problem that now we have to solve; and now with these 

boundary conditions; now we have this boundary value problem and with these boundary 

conditions we can attempt the solution. So, because the boundary conditions are like this, 

we attempt the solution with this expansion using the modes of a normal string. So, if 

you substitute this expansion here of course; if you substitute this expansion in the 

equation and finally solve for alpha n… These are straight forward steps which can be 

done very easily; we have been following the steps as before. So, if you substitute, then 

take inner product with this Eigen function and finally you solve for alpha n. Here, 

omega n are the natural frequencies of the travelling string. So, once you have alpha n, 

you can substitute back here, and you have u. So, if you have u, then you can substitute 

that expansion here to get W. So, finally this is the expression that you get. Now, here I 

have substituted the expression of alpha to finally obtain this; and if you take the inverse 

Laplace transform of this, which you can do very easily using residue theorem, if you do 

that then this Green’s function, so the solution is the Green’s functions; we can write this 

as… so, use residue theorem to inverse the Laplace transform. Here, it has simple poles 

at plus or minus i omega n. So, once you do the Laplace transform, we can easily obtain 

this. Here, this is the Heaviside step, which appears from the causality condition that you 



are considering the Laplace, this complex integral over contour, which closes the left half 

space when you do the inverse Laplace transform. So, you have to close on the left half 

space. So, this indicates that from the causality condition. So, we have this Green’s 

function, which is a solution of the travelling string with an impulse impulsive force at x 

equal to x bar and t equal to t bar; this gives a solution at x t; and finally, for any 

arbitrary forcing q, so if you have any arbitrary forcing q(x,t) on the right hand side of 

the equation of the travelling string, then you can find out the response of the travelling 

string using this integral. 

So, let us see what we have discussed in this lecture. So, we have discussed the dynamics 

of travelling strings. We have performed the modal analysis of strings and we have found 

that these Eigen functions of the travelling string are complex and the problem is non 

self-adjoint. This makes the dynamics actually very interesting though it is theoretically 

little cumbersome to handle; because now the orthogonality is replace by bi-

orthogonality. But then we have this Laplace transform technique and we have derived 

the Green’s function for the travelling string. Now, once we have this, then we can solve 

the initial value problem, the forced vibration problem etc. in unified manner. So, this 

gives us a very powerful way of approaching the dynamics of travelling strings. So, with 

that we conclude this lecture. 
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