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So, we are being looking at forced vibration analysis of one-dimensional structures in the 

positive lectures. Today, we are going to look at; we are going to continue that our discussion 

on forced vibration. In the previous lectures, we have seen harmonic forcing, systems with 

harmonic forcing, which we have separated in space and time. There is a distribution function 

for the force, and then there is a multiplying harmonic function of time. Today, we are going 

to look at general forcing, which means forcing which need not necessarily be separable in 

space and time. 
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So, we are going to look at general forcing in today’s lecture. Now, let us consider some 

examples of this general forcing. In one of the previous lectures, you have already seen that 

an initial value problem with certain boundary conditions and initial conditions; so an initial 

value problem can equivalently stated as… So, these two statements are equivalent. So, 

essentially we are converted the initial value problem to forced vibration problem. Here, this 

is the Dirac delta function and this is the time derivative of the Dirac delta function at t equal 



to zero. This problem is the forced vibration problem, which is equivalent to this initial value 

problem. In this case, as you can see this kind of forcing is very special in form, and this is 

not harmonic forcing. Forcing of this type are when a force is travelling on a string for 

example, on a bridge, you have car travelling at a certain speed so you have the travelling 

load problem or travelling mass problem. Such forces load the structure, and they are not 

harmonic forcing. In fact, in such problems space and time are coupled, they are not 

separable as we will presently see in this lecture. Problems of this type can be considered to 

be of general forcing. I mean, these are the problem with general forcing. 

 

Let us look at, how do we solve general forcing problem. So, we consider for example, let me 

state the problem. We have the equation, the differential equation of motion with of course 

certain boundary conditions. 

This q(x,t) is the is the general form of the force, which we are now considering. Now to 

solve or approach such problems, we have various methods. What we are going to consider 

here today are the modal expansion methods. We are going to concentrate on this modal 

expansion method and towards the end, we are also going to look at the Green’s functions 

method. Essentially today, we are going to look at these two methods. Let us start with this 

modal expansion method. 
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We have discussed in the previous lecture how or why this modal expansion technique 

works? It is because the modal space forms or the Eigen functions of the Eigen value problem 

of a system form a complete basis, which means any shape of any configuration of the system 

can be represented by these Eigen functions. This is the basis of this modal expansion 

technique. So, we are going to look at this problem with certain boundary condition. As we 

have discussed the solution, we will represent in this form. So, these are the Eigen functions 

of the corresponding Eigen value problem. When we substitute this in the equation of 

motion… So, these Eigen functions already satisfy the boundary conditions; so we need not 

worry about the boundary conditions. So here, we now have to determine these coefficients, 

so that this expansion satisfies the equation of motion. We have substituted this expansion in 

equation of motion and now here this K is a linear differential operator; and therefore what 

we can do is we can commute this summation and the operator and we can rewrite this 

equation in this form. Now recall, that the Eigen value problem for the system. So, this is the 

statement of the Eigen value problem; so here, the differential equation of the Eigen value 

problem. From here we can see this expression of the stiffness operator operating on the 

Eigen function; and then what we obtain… this. Now if I use the orthogonality condition, so I 

take the inner product. So what I do is, I multiply both sides of this equation with wj and 

integrate over the domain of the problem. Then we know that from orthogonality of this 

Eigen functions, we already known that, if j is not equal to k then this is zero. So, what this is 

going to do is filter out the j
th

 coefficient in the expansion. So, we are going to get… So, we 

are going to get the j
th

 equation and therefore, I can write this in this form where this force 



term fj is given by… and this I can take for different Wj and I can generate all these equations 

corresponding to the coordinates of the individual modes. So, I have these equations 

governing the coordinates of the system in the configuration space or modal space and that is 

a forced dynamics problem where the forcing in the j
th

 mode is expressed in this form. So, 

once we have the applied external force, we can easily compute this from this external force. 

Now, this is a second order ordinary differential equation. So, we will need two initial 

conditions for this problem to solve the problem completely. So what we need are the initial 

conditions. Now, we are given these initial conditions on the field variables. So, we once 

again have this expansion… and similarly from the velocity initial condition, we get this 

equation. So, we have to solve, we have to solve this equation with initial conditions on p at 

zero and p dot at zero, which we are going to now solve from these two equations. 
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Once again if we use the inner product; now here remember that this is the orthogonality 

condition. Therefore, what we must do to solve these coefficients in a straight forward 

manner., so what we do is we multiply both sides with mu and Wj and integrate over the 

domain of the problem. Once we do that, it is going to filter out the j
th

 term in the expansion; 

and therefore that is how we can solve pj(0) and we can take, we can obtain all this infinitely 

many initial condition on the modal coordinate. Similarly, we can also find out the initial 

velocity condition. So, once we have all this initial conditions p and p dot, then we can solve 

this problem. Once we have these initial conditions then we can very easily solve, we already 

know the solution of this kind of forced dynamics. Here one thing, do note that what we have 



achieved in this process is the discretized equations of motion. We have discretized the force 

vibration problem. Now, let us look at some examples. 
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The first example that we are going to consider is that of a force travelling on a string. Let us 

look at this problem. So, we have a taut string on which there is a concentrated force which is 

travelling at a speed v. So, this F is a constant. So, let me write down the mathematical 

formulation of this problem. So, we have the string equation of motion with this forcing and 

of course the boundary conditions. These are the boundary conditions and there can be certain 

initial conditions. Now here, we will be looking at the forced problem using this expansion in 



terms of the Eigen function of the taut string. Now, if you substitute this here and follow the 

procedure that we just now discussed then for the j
th

 mode the discretized equation of motion 

appears to be in this form, where this omega j… So, this is our equation of motion. 
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Now the solution of this equation can be easily written as… So, this is the solution of this 

equation provided v is not equal to c; where c is the speed of transverse waves in the string. 

So, the c is the speed of transverse waves in the string. So, as long as the velocity or the speed 

of travel of this force is different from c, is less than c for example, this is going to be the 

solution. So, you see when v equal c, and if you look at this omega j then we will find, we 

realize that when v equal c, this becomes resonant forcing of the string in the j
th

 mode and 

therefore in all modes. So, all modes will be in resonance, if v equals c. So, that would be a 

resonant forcing of the string and the solution is, as you know already is in a different form. 

So, this solution is valid as long as v is not equal to c. You can also find out the resonant 

solution using the standard techniques that you have studied in discrete vibration problem, in 

a course on discrete vibration. Now, this is the solution from therefore, here these are 

unknown coefficients which form the homogeneous solution of the system, which have to be 

found out from the initial conditions. We will consider a stationary string before the force 

starts travelling on the string; so initial displacement is zero; initial velocity is zero; and if 

you solve for this coefficients then you will see that the coefficients turn out to be… and 

therefore, the final solution of our problem… So, this is our final solution; and this solution is 



valid of course when v not equals to c; not only that, but also time interval for which the force 

is on the string. As soon as the force crosses the string, this solution is no longer valid. We 

have to solve for the string with certain initial conditions which are the final conditions at t 

equal to l over v of this. So, we will get the final displacement of the string and the final 

velocity at t equals to l over v from this expression that goes in as the initial condition of the 

string in free vibration. So, that will be an initial value problem. So, after this we have to 

solve an initial value problem to understand how the string behaves after the force leaves the 

string. So, that is a initial value problem which we have to solve using the final conditions 

from this solution; and we have already seen how the initial value problems are solved. Let us 

look at the certain configurations of the string. Here, you will see some configurations of the 

string at certain time intervals for example at 0.2 l over v; so this force has travelled one-fifth 

the total length of the string. This is how the string looks like; you see that this portion of the 

string is as yet undisturbed. But when t reaches 0.4 l over v, so forty percent of the distance 

has been covered, this information that there is a force travelling on the string has reached 

this end. Here at 0.6 l over v, you can see bend forming here. So actually the information is 

now reflecting back and forth on the string; and this shows 0.8 l over v. So, these are 

snapshots; here I have a simulation or the animation of the same thing. 
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So, I have taken number of terms in our expansion as I just now discussed and I have plotted 

the phase of the string at different time instants and prepared this animation. Now, here you 

can see that the string appears to move in a very strange manner; it looks static, certain 

portion of the string looks static in certain time instants. So what is happening is this 



disturbance which is created by this travelling force travels on the string and a wave reflects 

back and forth on the string from the boundaries. Unless the disturbance reaches the 

boundary of the string, the string does not know that a force is travelling; so it remains, it 

look like static. Remember two things in this animation. One thing is that this is a slow 

motion of the actual thing that is happening. It is very difficult to observe this kind of motion 

by naked eye. You have to record it and run it in slow motion. The second thing is, this 

animation does not take care of the motion of the string after the force has left. This is just a 

repeat of the animation when the force travelling on the string. So here, we do not see that 

initial value problem solution. Now this is at low speeds when v over c is 0.1; so it’s 10 

percent of the critical speed. In this animation, this is near resonance, so v over c is 0.95, 95 

percent of the critical speed. Here you will find that those reflections or the kings etc., they 

are not so easily observable at least; and the amplitude is growing as the force moves from 

left to right which is a typical behavior near resonance solution. At resonance as you know 

the amplitude grows linearly with time, so this is near resonance, slightly lower, so you can 

see the behavior of the string is distinctly different from the previous behavior. So. This 

motion, this is a transient motion and this has to be understood in terms of the propagation of 

waves in the string which we are going to take up later in this course. 
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So, we have looked at the modal expansion solution. There is another method which we are 

now going to look at briefly. We have already come across this Green’s function method in 

our previous lecture. So what we are going to solve is… So in the Green’s function method, 

we solve the problems of this type where the forcing has a very special form; these are Dirac 



delta functions, Dirac delta distribution. So the forcing is of a very special form like this. So 

what in effect this represents is, it represents the impulsive loading at the location x bar and 

time t equals to t bar. So we give an impulsive loading at the location x equals to x bar of the 

system and at time t equals to t bar; and we are going to look at the solution of the system to 

such loading. And here the boundary conditions are homogeneous and the initial conditions 

are all zero. The solution of this system is known as the Green’s function. We will represent 

this in this form. So, these points are important that we have homogeneous boundary 

conditions and zero initial conditions. So always this Green’s function is calculated with these 

conditions. So, this will be classically assumed whenever Green’s function is calculated; so, 

homogeneous boundary condition and zero initial condition. We know, we have seen in 

previous lecture, how non homogeneous boundary conditions can be converted to 

homogeneous boundary conditions. So, if required we have to do that and then calculate the 

Green’s function. Why? Let us first look why this or how this Green’s function method 

works? We frame that for any arbitrary forcing when we have forcing in the form of q(x, t) a 

general forcing then the solution actually can be obtained in this form. Once we have this 

Green’s function, the solution to arbitrary forcing can be determine like this. Let us see, why 

this happens? How this is happening? 
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Let me write this differential equation. Let me write this differential equation as… So, this is 

our problem where P… I am representing this full operator with P. Now, what we do is we are 

actually solving this problem first with of course those homogeneous boundary conditions 



and zero initial conditions. And then what I said was the solution was given by this. So, let 

me apply the operator P on this. Now this integral is over x bar and t bar. So, this operator can 

go inside and it will operate only on G, and we know that P[G] is… and this is equal to 

therefore… So, therefore this is definitely a solution; so w given by this argument is 

definitely a solution of this system. So, this shows that we have the solution in terms of the 

Green’s function. 
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Now, let us calculate the Green’s function for the string. So, we are giving an impulsive 

loading at time t equals to t bar at a location x equals to x bar;  and the solution is the Green’s 

function. We are considering homogeneous boundary condition and zero initial condition. 

First what I will do to determine this Green’s function, we have to solve this Green’s function 

known by solving this system, this problem. What we are going to do to simplify things is, 

we will take the Laplace transform of this equation. We defined the Laplace transforms as 

follows, and we know that the Laplace transform of… Here this is zero because the initial 

conditions are zero; similarly Laplace transform is given by this with zero initial conditions. 

Now, once you take the Laplace transform of this equation then and rearrange, we obtain this 

equation along with the boundary conditions like this. This is our boundary value problem 

that we need to solve now. Now, because of, the homogeneous, we have homogeneous 

boundary condition, therefore we can look for solutions in this form. So, substituting this in 

the boundary value problem and when we rearrange, take the inner product both sides with 



sin n pi x over l. So, we substitute and take inner product. So, we substitute this in the 

differential equation, and take inner product we sin n pie x over l and both sides; and then it 

filters out the n
th

 coefficient, which I can write, this can be done very easily. So, we will 

obtain this coefficient; and finally the solution therefore is obtained. Now this is the solution 

in the Laplace domain. Now we have to take Inverse Laplace transform, which can be done 

by Residue theorem. And the final solution, these are simple steps, I will write the final 

solution.  
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Here this is the Heaviside step, which comes from the causality which means that the solution 

does not exist before the impulse is provided. So, t less than t bar is zero, the solution is zero. 

So, the solution is non zero only when t is greater than t bar. So, this is your solution of the 

Green’s function and as I have discussed for any arbitrary forcing, you can determine the 

solution using this integral. This is the very powerful method of approaching forced vibration 

problems with arbitrary forcing. Now you can, we know how to solve the Green’s function 

method. Here we have used the modal expansion technique to solve the boundary value 

problem. In a previous lecture we have seen how the Green’s function was solved in a 

different method. This approach gives as a very powerful method of solving forced vibration 

problem of continuous systems. Now, in this lecture we have considered the general forcing 

of one-dimensional continuous system and we have looked at the modal expansion technique 

and the greens function technique for solving the forced vibration problem of one-

dimensional systems. So, with that we conclude this lecture. 
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