
Vibrations of Structures 

Prof. Anirvan DasGupta 

Department of Mechanical Engineering 

Indian Institute of Technology, Kharagpur 

Lecture No. # 12 

Forced Vibration Analysis - I 

 

We have been looking at the response of one-dimensional continuous systems to initial 

conditions; and we have also looked at how this initial value problem can be recast as a 

as a forced vibration problem. Now, in this lecture and in the next two lectures we are 

going to concentrate on the forced vibration analysis of continuous systems. Now, the 

question naturally arises what are the sources of forcing; how or why we should study 

forces. So, there are various reasons. For example, you can have a system with an 

actuation, say for example, for vibration control or for some other control. So these 

actuators, they will excite the system, the mode of the system. Secondly, you can have 

fluid forcing, for example, bridge or high-rise building that will be excited by the 

flowing wind. So, that provides forcing to structures. Then there are earthquakes, and 

such natural sources of forcing. And finally and very interestingly forcing is also used for 

evaluation and testing of materials, for example to detect flaws or spaces or falls in in 

material or in a structure. So, from these considerations, it becomes important to analyze 

forced vibrations of systems. So, what are, let us briefly look, what are the ways of 

forcing as structure. So, you can have an actuator; you can just attach an actuator to on 

the structure, and you can force it. You can force a structure like a string by bowing. So, 

in a violin for example, you use a bow to excite the string by bowing; or you can a put, 

you can hit the structure with an impact hammer and that gives as impact or impulse 

forcing to the structures. So, today we are going to look at forcing; we are going to start 

our discussions on forced vibrations of continuous systems, one-dimensional continuous 

systems. 
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So, let us consider a system; let me first formulate the problem mathematically. So the 

system which can be put in this form, the kind of system we are discussing, can be put in 

this form. So, here this represents a general forcing. Along with this, ofcourse you have 

the boundary conditions, let’s say taken as zero, and you have the initial conditions. So, 

this is the complete formulation of the forced dynamics of the system that can be 

represented by this differential equation. Now this forcing term, as you can see, makes 

the equation of motion inhomogeneous. So we no longer have w equals to zero, which is 

the trivial solution, as the solution of this system. Now, there can be various kinds of 

forcing. You can have harmonic forcing, which is the most common kind of forcing 

specially, when we are evaluating or testing a structure, we provide harmonic forcing and 

try to see the response of the structure, whether it matches with our expected response or 

not. So, this harmonic forcing is one of the very important types of forcing which we are 

going to looked at. The second is general forcing, which can be…So in the harmonic 

forcing, for example, your q(x,t) can be Q(x) times cosine omega t, where omega is the 

forcing frequency, forcing circular frequency. So here, as you can, this kind of forcing is 

separable in space and time, possibly separable. For example, one term, one frequency is 

forcing like this; so you have this as separable forcing in space and time. Now, this is the 

amplitude function or distribution of the force; and this is the temporal variation of the 

force. And any periodic forcing, as you know, can be represented as a series of harmonic 

forcing. So, if you know the solution for the harmonic forcing, then you can also find out 

the response to any periodic forcing. So, we can also deal with periodic forcing if we 



know how to find out the response to harmonic forcing. Now, when you have this non-

separable, when this space and time part non-separable; we are going to look at some 

examples of this forcing. We have actually looked at one of the examples of general 

forcing, when we write the initial value problem as a forced vibration problem; and we 

are going to discuss this shortly in later lectures. So, today we are going to focus on the 

harmonic forcing. 
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So, let me write the differential equation of motion as… So, the forcing that I discussed 

just now can be represented as a part of this complex forcing term, where as I mentioned 

this is the force distribution function, this is the circular frequency of forcing, and this R 

represents the real part of this argument. Now the solution, this of course, along with the 

boundary and the initial conditions will completely specified the forced vibration 

problem. Now, first we must write down the general solution of this differential 

equation. So as you know, the general solution of such a differential equation can be 

written as the homogeneous solution, which means the solution with zero forcing, plus 

the particular solution, which is due to this forcing. So this kind of solution satisfies the 

differential equation since the homogeneous solution will actually go zero; once you 

substitute here the particular solution will satisfy or equate the right hand side. So the 

solution, the homogeneous solution we have been looking at for the last few lectures, it 

can be represented as… So, this is the homogeneous solution which is expanded in terms 

of the Eigen functions of the corresponding Eigen value problem. So the Eigen value 



problem was obtained by considering the homogeneous problem and searching for 

special solutions which are separated in space and time. So from there, we have obtained 

these Eigen functions and we have been representing the solution for solving various 

kinds of problems, for example the initial value problem. So here again we come across 

the solution; so this is the homogeneous solution and this is the particular solution which 

satisfies or which meets this non-homogeneous term of the right hand side of the 

differential equation. Here, this is the amplitude function, the amplitude function of the 

response. So as you know that in undamped system, the response is proportional to this 

harmonic time function, so we have written this out as the real part of exponential of i 

Omega into t. Now, if we substitute this solution in the equation of motion, the 

differential equation, then what we obtain is that this term is going to go to zero; so what 

remains is that if you substitute this and make a little bit of simplification of the equation, 

then what you will obtain is… So, this is the differential equation in X, so this is the 

amplitude function X in the space co-ordinate x. So, this is the differential equation that 

you obtain by substituting this solution in this equation of motion; along with this you 

also have the boundary condition which this amplitude function must satisfy. This comes 

from the boundary conditions which we wrote out, when we formulated the problem. So 

what we obtain is a differential equation in this amplitude function along with these 

boundary conditions. This specifies what is known as the boundary value problem. So, 

this is the boundary value problem corresponding to the amplitude function of the 

particular solution. So we must solve this boundary value problem in order to solve this 

amplitude. So there are various ways of solving this boundary value problem. One is the 

Eigen function expansion which is what we have been looking at the past few lectures. 

This works on the premise or the fact that for the self-adjoint problems, you have the 

Eigen functions which are all real and which form a complete basis for the system. So by 

complete basis, I mean that if any configuration or shape of the system can be 

represented in terms of these Eigen functions, and we have been looking at this method 

in past few lectures. So you can represent any shape using this Eigen functions as we 

have done even for the homogeneous solution. So this Eigen function method is one of 

the methods that can be used to solve the boundary value problem. The other one is the 

Green’s function method. So, this is another method which we are going to look in the 

next lecture.  
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Today we are going to focus on this Eigen function expansion method for solving the 

boundary value problem. So what we are going to… So in this Eigen function expansion 

method, we have our differential equation of the boundary value problem in this form. 

We are going to expand this solution, the general solution of this differential equation in 

terms of the Eigen functions of the problem. So, these are the Eigen functions of the 

problem which we have obtained previously by solving the homogeneous problem. So if 

you substitute this expansion in the differential equation, then… So, here of course these 

alpha k’s are constant which are to be solved. So, this is what we obtain. Now, this K is 

the linear differential operator. So, I can exchange the summation and the operator and 

write it like this. Now recall that the Eigen value problem for this operator, for this 

system read… So therefore I can write the operator acting on the k
th

 Eigen function on 

this form. So, this is what I am going to replace here. So if I do that and simplify… So, 

this is the equation that I obtain which has these unknown coefficients alpha k, which I 

now need to solve. So, for this which I use is the orthogonality conditions for the Eigen 

functions. 
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So, let us see how we can solve using the orthogonality conditions of the Eigen 

functions. So, the orthogonality condition of Eigen functions of the system that we are 

considering that can be represented as… So for j not equals to k, we have this 

orthogonality condition. We sometimes denote this as the inner product like this. So to 

solve these coefficients, what we can do is we can multiply the both sides with j
th

 Eigen 

function and integrate over the domain of the problem. So, we will say that we take the 

inner product with the j
th

 Eigen function; and when we do that we this does in effect 

because of orthogonality is that only the j
th

 term is filtered out; so which means if we do 

this inner product, if we take the inner product then what we are going to obtain this 

condition; and therefore… So, that is the solution for alpha j. Now, I can take j from 

pone to infinity and I can solve for all alpha j’s. But this is contingent for the condition 

that the forcing frequency is not equal to any of the natural frequencies of the system. So, 

the circular forcing frequency is not equal to the circular natural frequency, any of the 

circular natural frequencies of the system; otherwise the corresponding alpha j will go to 

infinity. So, you do not have a finite solution in that case. Now, let look at the situation 

when… So, this completes our solution for the non-resonant case. So, finally you can, as 

I have wrote, can write this again. So, we have the solution; and the particular solution 

will be obtained as in this form. This now has to be substituted in the complete solution 

and remember that this homogeneous solution has these unknown constants Ck and Sk, 

which I have written a few moments ago; those constant are to be determined from the 

initial conditions. So, we have to apply the initial conditions to solve for the Ck and Sk in 

the homogeneous solution. So, that will complete the solution for the forced vibration 



problem. So, this part we have already done in our previous lectures, how to solve for 

these constants using initial conditions. So we will not repeat that here again. 
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Now, we are going to look into this condition, what happens if we have a resonance 

forcing. So, let us consider the case of resonant forcing. Let us assume that the forcing 

frequency is equal to one of the circular natural frequency of the system; let us say the j
th

 

circular natural frequency. So, the forcing frequency is equal to the j
th

 circular natural 

frequency of the system. In that case, our solution; so, let me write this equation once 

again. So, what we have is, we have… So, this is what we have. So, therefore our 

particular solution; we must consider this; so let me write down this particular solution 

as… Now, we have been expanding this X, the amplitude function of the particular 

solution in terms of the Eigen functions; we will do that. But now, because of this 

resonant forcing, and if you look at the solution that we just now derived; when this 

capital omega equals some omega j, so this is going to be undefined. So, to prevent that, 

we are going to expand this as this for all k except k equal to j. So, the same expansion 

words for all the non-resonant modes. For the resonant mode, we are going to considered 

or assume that this coefficient is now a function of time. So, this is going to be our 

expansion. Now, here this we have considered to be a function of time as we do in, for 

example in variational methods, so variation of parameter. So, we assume that this is the 

function of time, and we substitute this expansion in here, and the particular solution into 

our differential equation. Then for all the non resonant modes, we have a way of solving 



just as we have discussed just now. For the resonant mode, we are going to obtain 

differential equation corresponding to alpha j which is obtained as… If you substitute 

this and take the inner product with Wj, this is what you are going to obtain in account of 

orthogonality. Now, this differential equation, we know from our previous studies that 

this differential equation admits the solution of this type, where beta j is now a constant. 

It could be this; but then when you substitute and evaluate this will be vanished. So, this 

will be only beta j; and beta j if you substitute this solution form in here, then… So, this 

is the solution for beta j; and once you have the solution for alpha j, then you can 

substitute in this expansion and what you will obtain is… So, here as you can see this 

beta j is, there is one beta j in the denominator, so this is imaginary and when you 

substitute this, and take the real part as here; so, when we substitute this whole expansion 

here, and take the real part, what we are going to obtain finally, upon simplification… 

We obtain this sine omega j t when we take the real part, because of that i sitting in the 

denominator of beta j; and along with this, we have the other terms. So, this completes 

the particular solution. Now, once again you have to add it with the homogeneous 

solution and use the initial conditions of the homogeneous solution. 
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Now here, we see something interesting in this solution form. In the numerator of this 

term; so as usual the resonant mode, the amplitude of the resonant mode has an envelope 

which is linearly increasing with time. This is what we all know; this is what happens for 



resonance; in a resonance mode this is what happens. Now, in a continuous system like 

this, we have this integral sitting in the numerator of this resonant solution. Now, this 

integral in general will be non zero. But there are special instances when this integral 

will actually vanish. So, let us look at some situations. So, if you consider the omega j to 

be the second natural frequency; so omega, the circular forcing frequency is equal to the 

second circular natural frequency of the system. In that case as you know for a string, let 

us say; so for a taut string, we have the Eigen function sine of 2 pi x over l; so this is the 

Eigen function for a string in second mode. So, if we have a string which is forced at the 

middle. So, this is let us the string and suppose the forcing is of this form is being 

applied at the middle. If you substitute this, so Q(x) in this case; and if you substitute this 

here, you can easily see that this integral vanishes. So, if this integral vanishes even 

though you are exciting at the second natural frequency of the system; so this is omega 2; 

capital omega is omega 2; the second mode will not show the resonant behavior, which 

means, because of this integral vanishing, this term will drop out from the solution; so 

the response of the system will still be finite. So force like this cannot excite this mode; 

this cannot excite this mode, because the forcing is at this node. So, this is one situation 

where there would not be forcing. There can be other situations, for example, one such 

example we are going to look into very shortly. So, what we have seen here is that in a 

continuous system, just forcing the system in a resonant frequency does not mean that 

you will observe the resonance solution. So, the location of the force is also important in 

these situations. 
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Now to look at what we have been doing, let us look at an example. So, this is an 

example of taut string with uniform harmonic forcing. So, let me represent the situation 

that we have. So, this is the string; and the forcing is a uniform; so the distribution is 

uniform. So, the mathematical problem, the differential equation, the boundary 

conditions on the two ends; so it is a fixed-fixed string. Now, we are going to look at 

solutions in this form. If you substitute this in the equation of motion and removing the 

cosine omega t term throughout, we get this along with the boundary conditions. Now, 

we will simplify this by dividing the whole thing by the tension and T over rho A is C 

square. I will write it like this. Now, this is the boundary value problem of our system 

which we are now going to solve. So, as we have done, we know that the Eigen functions 

of the taut string of this form. So, we are expanding in terms of these Eigen functions; 

and when we substitute in here and let me; so these steps are quite simple; let me write 

out the solutions. So, I substitute this in the differential equation and take inner product 

with the j
th

 Eigen function. So, when I do that, I can obtain the solution of alpha j. These 

steps are straight forward. So, you obtain the solution for alpha j; and you can put in any 

value of j, and you can get this alpha j; and now, you can substitute in the expansion to 

obtain the amplitude function. So, let me write out the particular solution then… so, cos 

of k pi minus 1; so that completes the particular solution. 
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So, this is the particular solution of the problem. Now, this boundary value problem can 

also be solved exactly as this is differential equation is straight forward and the solution 

of this differential equation can be easily written as… So, this is the general solution. 

Now see, here in the previous solution, we did not have to worry about the boundary 

conditions, because we have expanded in terms of the Eigen functions, which already 

satisfied the boundary conditions. But now, we have solved this exactly; now, we have to 

satisfy these boundary conditions. So if you solve for these constant D and E, you can 

easily obtain these constants which can be substituted here, and you can once again get 

the particular solution. But, now the particular solution is closed form expression. So, 

this is the solution which is now in the closed form. So, we have kind of summed over all 

these terms to obtain this. Now here, one thing to note is you have this cos k pi minus 1. 

So, for even values of k this is going to go to zero; this bracketed term is going to go to 

zero. So, therefore, you will have only odd. So, only for k odd, you will have non-zero 

coefficients. 
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Now, in this figure, in this slide, I have compared these solutions, the exact solution, the 

closed form solution with the series solution taking up to three terms. So, if you look 

at… So, I have taken the forcing frequency very close to the first natural frequency of the 

string; it is 0.9 times the first natural frequency; and you can see that the exact solution 

and the series solution they match. Actually, I have plotted this series solution taking one 

term, another solution with two terms, and another solution with three terms. Now, in the 

first plot they are indistinguishable with the exact solution. This is when you force it 

close to the second natural frequency. So, two times of omega 1 is actually omega 2 for a 

string, as you know that they are integral multi force of the fundamental frequency. So, 

this is close to the second natural frequency; the forcing is close to the second natural 

frequency. This dashed curve is the series solution with only one term. So, you can see 

that this deviates considerably from the actual solution; while when you take two terms 

or three terms in the series, then they are matching quite nicely. This is when the forcing 

is close to the third natural frequency. You see the one term series solution is quite off; 

while when you consider two terms or three terms, then they are matching quite nicely 

with the exact solution. This is when your forcing at the, close to the fourth natural 

frequency. Again the one term solution is off, the two term solution is this blue solid line, 

the red line is the three term expansion series solution, and the exact solution is given by 

this black solid line. So, you can see that slowly as you increase the forcing frequency, 

and consider higher modes or the higher natural frequencies, then the two term solution 

is now in error; the three term is still quite close; but as you will go to higher and higher, 



you will have to take more and more terms in the series to get close to the exact solution. 

So, we see that the series solution actually converges on to the exact solution. 

So, let us look at what we have studied today. We have discussed the forced vibration 

analysis of one-dimensional continuous systems; we have looked at harmonic forcing; 

and we have solved this problem using the Eigen function expansion method. We are 

going to continue this discussion, in the next lecture. We conclude this lecture. 

Keywords: forced vibration, harmonic forcing, boundary value problem, Eigen function 

expansion method. 

 


