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Initial Value Problem 

 

Today, we are going to look at what is known as the initial value problem in dynamics or 

vibrations. So, we are going to look at the initial value problem for continuous systems. 
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So, what is this initial value problem? So, suppose you have, let us say, a string and it is 

given some initial shape or some initial velocity distribution over the string. How will to 

system evolve? So, we want to determine the evolution of this system. So, given this 

system, described by this equation of motion, these boundary conditions, and these two 

initial conditions, how will the system evolve as time progresses? So, this is the central 

problem in the initial value problem. Now to solve this problem, there can be various 

approaches. Today we are going to look at the modal expansion method. The initial 

value problem can also be solved by the Laplace transform method. We are going to look 

at this Laplace transform method slightly later. So, we are going to concentrate today on 

the mostly modal expansion method. 
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Now, we have performed modal analysis of this kind of system, and we have observed 

that when we have a self-adjoint system, which is to say that the stiffness operator is self-

adjoint, then the Eigen value problem has real Eigen values and real Eigen functions. 

Now, these Eigen functions have this additional property that they form a complete basis. 

This is the underlying thing that is used in modal expansion method. So, this property is 

of fundamental importance in the modal expansion method. 

So, what is this complete basis? We have discussed that, suppose let us consider the 

string again. So, the solution was obtained, was first considered. So, the general solution, 

we have expressed in this form like this, which I can write like this… Now what this 

says is that, say for example at a certain time instant t, the solution or this field variable 

is an infinite expansion in terms of this Eigen functions, which for the string, it happens 

to be… So, for a fixed-fixed string, it happens to be this sine k pi x over l. Now, when 

we say that this is a general solution, that means, any shape of the string can be 

represented by this expansion. So, the keyword here is any shape. So, any arbitrary shape 

of the spring can be represented by an expansion of this type; and we have also discussed 

that these Eigen functions are orthogonal. So, if I make, if I want to have a visualization 

of this that these Eigen functions are orthogonal, and these forms a function space with 

this as we call as the basis. Now, of course there are infinitely many basis functions. 

Here I am drawing only three; and with a slight stretch of imagination you can very well 

imagine that there are infinitely many such axes which are all orthogonal to one another 



to represent the orthogonality property with respect to certain inner product as we have 

discussed. So, in a space which is known as the configuration space or the modal space, 

in such a space, the points with coordinates P1, P2, P3, P4 etc; so, these points 

representsthe configuration of the string at the time instant, when the coordinates are P1, 

P2, P3 etc. So, at a particular time instant, this expansion, therefore, represent the shape of 

this string at the time instance. So, this point represents a shape, the configuration of the 

system; and any shape of the string is the point in the space. There is no shape that lies 

outside the space. So, this is the important thing. So, any shape of the string can be 

captured by this expansion. This is known as the expansion theorem, the modal 

expansion theorem. So, the modal expansion theorem says that any shape of the spring 

can be represented in terms of these Eigen functions. So these Eigen functions, they form 

a complete basis that means any shape can be represented in this basis, what I have 

shown here in three dimensions. So this is the key to the modal expansion method for 

solving the initial value problem. So for the problem that we have here or similar 

problems we will now try to solve using modal expansion method. Let us see this general 

system with certain boundary conditions, let us say of this form, and some initial 

conditions. SO, we intend to solve this problem using the expansion this… So, if you 

substitute this expression here, so, this is what you will have. Now K is a linear 

differential operator and the kinds of system we are considering, this K has only spatial 

derivatives and this is linear. So, therefore, I can interchange the summation and the 

operator. So, finally, I can simplify this and write… So, this is what we obtain. Now, we 

recall that this Eigen value problem for this system was… So, this was the statement of 

the Eigen value problem for this system. So, therefore in this summation, I can replace 

this operator acting on the k
th

 Eigen function with this; and therefore, I can simplify the 

whole thing and write like this. Now, this is a summation again in terms of these Eigen 

functions. So, I can use now the orthogonality property. So, I will multiply both sides by 

j
th

 Eigen function and integrate over the domain of the problem. So, this I will say we 

take the inner product with, let’s say, Uj. If I take inner product with Uj then that filters 

out the j
th

 term in this expansion. So, I will have... and this I can do for all j’s, all values 

of j; and the solution, the general solution of this system can be easily written as… and 

therefore, I will substitute this in the original expression, and write… So this is our 

general solution. Now, once I have this general solution, now I have to use the initial 

conditions. Let us say, these are the initial conditions that are specified for the system. 



Now, using these initial conditions, we have to actually solve for these coefficients Cj 

and Sj. 
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Let us see, how we can do that. So, substituting this expression in the initial conditions… 

So this is from the first initial condition, and from the second initial condition, this… So, 

we have to solve for the coefficients. So there are infinitely many coefficients, so, for Cj 

and similarly, infinite coefficients for Sj, and we have these two equations. But then 

remember that these Eigen functions, they are orthogonal. So, we can use once again the 

inner products. So, suppose I take the inner product with let’s say U with Uk, then I can 



write… So, once I take inner product with Uk, this filters the k
th

 term and that gives us… 

So, if I write in the integral form, so, that solves for all the Ck. Similarly, so that solves 

for all the values of Sk. So once that is done, I have all these values of Ck and Sk, which I 

can substitute here and I have the final solution. So, we have solved the initial value 

problem using the modal expansion technique.  
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Now, let us look at some examples of actual systems. So, the first example that we are 

going to see is shown in this slide. So, this is the collapse of a stretched bar. So what we 

have is… So, we have a fixed-free bar which is under tension because of this string. So, 

here there is a string which is attached to this free end of the bar and this is under a 

tension T. So, naturally this bar is under tension. Now imagine that you cut this string, so 

this string snaps. So, when this string snaps, this bar is going to collapse back. So, we are 

going to study the collapse of this bar. Let us mathematically formulate the problem. We 

have this uniform bar. So, we are going to write, formulate the problem at the moment 

the string snaps. So, in that case, the right end of the bar is force free. So, this boundary 

condition is… zero. Now the initial conditions we find out… you can find out the initial 

conditions. So, here what was the condition that this was under the tension T? So, you 

can write the string in the bar. So, that is del u/del x. The stress in the bar is the young’s 

modules times the strain and then this was under the tension T. So, the force was T 

which is sigma times the area of cross section of the bar. So, when the bar was under this 

tension, so, this was the condition. This is the equation of statics of the bar, which can 

very easily integrated out to determine… Since at x is equal to zero, u is zero. So, the 



constant of integration is zero. So, this is the initial conditions of the bar.; and the initial 

velocity, as soon as the string snaps, its initial velocity is zero. So, this is our problem. 

This is our initial value problem for this collapsing bar. So, as usual we are going to, as 

we have just now discussed, we are going to express the solution of this collapsing bar in 

terms of its Eigen functions. So the Eigen functions of the fixed free bar, they are given 

by… So these are the Eigen functions of the fixed-free bar, that we already known. Here 

omega k, these are given by these values. So here, this is the general solutions and these 

are coefficients that we must find out from these initial conditions. So, let us see. 
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So, when you substitute this in the first initial conditions… and similarly for the velocity 

condition… these are all zeros. So, this immediately tells us, for all k, this coefficient Sk 

must vanish. So, we are left with this. So, we take inner product with this k
th

 Eigen 

function and if you perform this integral, so you multiply this and integrate over the 

length of the bar; so, you can check… So, these are the coefficient and finally, therefore, 

the complete solution… So, the complete solution is… Now this solution I have plotted 

at certain time instants in these sets of figures. 
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So, you see at time t is equal to zero, this is the axial displacement, you see this is the 

axial l displacement of the bar. So, this line is nothing but, t x over EA. this is nothing 

but t x over EA. So, this is the straight line with x. Here of course, I am plotting with this 

non-dimensional free variable x over l. So, initially the actual displacement is like this. 

So, as time progress at 0.5 l over c, this is the axial displacement profile of the bar. So, 

here it is still linear, the same as it was here. So, you can imagine this portion of the bar 

does not know as yet that this has been released. So, this information has progressed in 

0.5 l over c time to approximately half. So, it is half; half of the bar knows that this has 

been released. This half still does not know. So there is the propagation of information 

from the end, which was released at time t is equal to zero in to the bar. So, at l over c, 

the bar comes to complete the full, whole of the bar is that equilibrium consideration, 

which is not shown in this figures; and then at 0.5 l over c, there is a compression taking 

over a bar, here this are all the bar is under tension; when it comes to the equilibrium 



configuration at l over c, the bar is in the equilibrium, but then it has an acquired 

velocity, it still goes and hits against the or compresses against the wall; and then there is 

a compression generating the bar and that compression is complete at 2 l over c. So, 

there is the as you can imagine, there is a propagation of information of this compression 

wave, as it is usually known as compression or tension wave, that progresses in the bar, 

and it reflects back and forth and that with the bar with vibrating. Now this propagation 

of this waves, we are going to discuss in this course at … So, we are going to discuss that 

in detail later in this course. 
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Now, here I have an animation, which shows the same thing. So, you can see this, so at 

this instant, now the propagation, now the compression wave is the propagating. So, this 

now in tension, on this side it is in compression, and this wave propagates back and forth 

in the bar, which is shown in the animation. Next, let us look at the another initial value 

problem, where we are going to have velocity initial condition. 
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So, let us consider a string, on which I specify a velocity profile. So, the velocity profile 

that I considered, so, we will consider that the initial displacement of a string is zero, but 

the velocity has this profile. So, let me mathematically formulate the problem. So, the 

initial displacement of the string is zero, while the velocity is given. So, we have velocity 

profile like this over this region. So, the velocity initial condition is provided only over 

this small region, which is of length one-fifth, one-fifth the length of the string. So, 

central portion, we have this kind of the profile. So for this problem, once again… So, 

we consider a solution of this form. Now when you substitute this solution in the initial 

conditions, you will obtain these two equations. So, we have to solve these two equations 

in order to solve the coefficients. So, immediately you can, from here it is immediate that 

all the Ck’s will be zero; while if you once again take the inner product and solve this 

problem, solve for the coefficients Sk, then Sk turns out to be… for k 1, 3, 5, so for all the 

odd values of k, we have this and zero for all the even values. So, for all the even values, 

Sk is zero; for all the odd values, we have this expression of Sk. So, now with these 

expressions in here, you can write down the solution of the string, the motion of the 

string. 
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So here, I have the snapshots of the string at certain time instants. So, at time t is equal to 

zero, as you can realize the string is in equilibrium position, so, I have not shown that. At 

0.05, t equal to 0.5, there is a hump that is generating, that is developed in this string; and 

as the time progress 0.25 value of this hump, its spreads in this string; but see this portion 

of the string, yet does not know that the disturbance has been created in this string. At 

this time instants, the full string is displaced; beyond this the disturbance reflects back 

from these fixed ends and the hump shrinks, and then it comes to the other side of the of 

the equilibrium position of the string. 
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So, this shows this animation. So, as you can see that the hump develops, spreads 

reflects, collapses and comes on the other side, and does the same thing. Remember that 

this is a slow motion of what actually happens, I mean, this propagation of this possibly 

cannot be observed by the human eye as such, you have to see it in slow motion to 

observe this kind of the propagation of this disturbance. So, we have looked at the initial 

value problem for a continuous system, and we considered two examples and using the 

modal expansion technique, we have solved this problem. 

Now, let as briefly finally look at this initial value problem. How an initial value problem 

can be actually converted to a forced vibration problem or a forced dynamic of a 

continuous system? Now this is very interesting because then, once we discussed of a 

forced vibration analysis, the method, that we discussed here, will be applicable for 

solving the initial value problem as well. So, which means that we can solve the forced 

dynamics, for the forced initial value problem as a forced vibration problem; so, we then 

have a unified way of it treating initial value problem, forced dynamic etc. 
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So, let us look at this a conversion of an initial value problem to a forced problem. Now, 

you see this, we have been considering, let say, this kind of a system and with certain 

boundary conditions and initial conditions. Now, if you take the Laplace transform of 

this equation. So, we define this Laplace transform. So if you define the Laplace 

transform in this manner, then in the Laplace domain here S is the Laplace variable. So, 

in the Laplace domain, you can write this… this you can very easily check. So, this is 

what you are going to get. So, this is the equation in the Laplace domain. Now, this is for 

this problem with these initial conditions. So, now the same equation can be obtained, so, 

this same equation of Laplace domain can be obtained for this system. So, in the Laplace 

domain, the equation of motion for this system is same as the Laplace transform of this 

equation. But now, you see, this system has zero initial conditions. So, here instead of 

these initial conditions, non-zero initial conditions, we have this forcing, this in-

homogeneity of the equation of the motion. So, we have been able to convert a system 

with initial conditions to a system with zero initial conditions, but with forcing. So, this 

is the system, which is now a forced system with zero initial conditions; and therefore, 

the solution of this will be the solution of the solutions of the original system with non-

zero conditions. So, this way we can convert or bring an initial condition problem, or 

convert the initial value problem to a forced vibration or a forced dynamic problem. 

So, in this lecture we have looked at the initial value problem; we have solved using a 

modal expansion technique; we have looked at some examples of how the solution 



behaves; and we have found some interesting, made some interesting observation in the 

solution; how the motion actually take places as propagation of disturbances in the 

continuous system. And finally, we have looked at converting an initial value problem to 

a forced vibration problem, and so with this we can solve the initial value problem and 

the forced dynamics problem in a unified manner, in a later lecture. So, with that we 

conclude this lecture. 
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