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In the previous lecture, we have discussed about the approximate methods of modal 

analysis; one class of methods which is based on the energy, the kinetic potential energy, 

the Lagrangian etc; so which are broadly classified as energy based methods for modal 

analysis. Now in today’s lecture, we are going to look at yet another class of methods, 

which are known as projection methods.  
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Our motivation for studying approximate methods, we have already discussed that 

analytical method, though they are more preferable, but are quit cumbersome; and we 

can have approximate methods, which can give quick and sufficiently accurate results.  
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In today’s lecture, we are going to look at these projection methods, which work directly 

with the governing differential equation of the system. 
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Since these methods work with the differential equations directly, they can be used very 

easily for dealing with non-conservative forces, non-potential forces etc. Since these 

terms, they can be directly written in the equation of motion and they are little tricky to 

introduce in the Lagrangian as such, though they can be done in that way; but if a 



method works directly with the equation of motion then these non-conservative terms 

and non-potential forces they can be handling quite effectively. 
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What do we do in these projection methods? Let us discuss this, in the context of this 

equation of motion… Let us consider a differential equation, which has a structure like 

this, so mu(x) represents the inertia operator and K is another linear differential operator. 

Essentially, what we are going to do is discretize; so this is the continuous system 

described by this partial differential equation. What we aim to do is to discretize this 

equation of motion. 

We use the idea of expansion of the field variable in this form. One thing, that may be 

mentioned here that even though this looks like a separable solution, but actually it is not 

because this is an expansion; had it been only one term then it is a solution that is 

separable in space and time. But once you take this expansion is no longer a separable 

solution. This may be written in terms of vector multiplication. Now here in these 

projection methods, there is a restriction on the kinds of function using which we do this 

expansion. These functions are known as comparison functions. 

Now, what are comparison functions? These are function that satisfies two important 

properties. They must be differentiable at least up to the highest order of space derivative 

in the equation of motion. The second important property is that they should satisfy all 

the boundary conditions of the problem. This is very important to note that these 



functions must satisfy all the boundary conditions of the problem. This actually makes 

this method little more difficult to apply compared to the energy based techniques where 

we were using admissible functions. 

We expand our field variable in terms of these comparison functions and unknown 

coordinates of time. If I substitute this expansion in the equation of motion, then of 

course, I do not except that this solution will satisfy this equation of motion because in 

any case this in an approximate solution. So what we generate is known as residue; this 

is known as the residue. We do not except that this will be zero throughout the domain. 

This function is known as the residue. Now we project this residue in a certain space. So, 

we are looking, I mean, this can be thought of as expanding the solution as a linear 

combination of certain functions as we had discussed previously as well and so on. This 

point represents the configurational system and as these temporal functions change, this 

point moves in this space. Now, we have generated this residue, because this solution is 

the approximate. What we can do is that we can try to make this residue zero at certain 

points. Now there are various ways of doing it.  
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Here, we first introduce the idea of projection. We have a suitably defined inner product 

of two functions. One is the residue that we have generated and another function H(x), 

which we can simply define in this case, and say that this projection is zero. Rather than 

the residue vanishing identically, we say that the projection of this residue on certain 



function that we will qualify shortly, so, this projection is zero. Since we are searching 

for approximate solutions, this solution structure that we have considered, that is 

approximate, since it is finite expansion. Once we substitute that in the equation of 

motion, we generate this residue. Since this will not be identically zero,  so, what we say 

is instead of having this identically zero, we have weaker condition which says that the 

projection of this residue along certain function directions, this is zero. We can take N 

such functions suitably chosen to generate N equations and thereby we can attempt to 

solve for this N unknowns pk that we have in the expansion the temporal functions. So 

the choice of this functions H that decides the method. What are the different ways of 

choosing these functions on which we project? The simplest choice is this Dirac delta 

function. Once we choose these functions as this Dirac delta functions, this method is 

known as the collocation method. 

 Now what does it mean that, to choose Hj as Dirac delta functions. So, if you substitute 

these functions here then what you will obtain is… What this means is that this residue is 

zero at certain points, not at all points, but at certain points over the domain. Say for 

examples for the bar, if I choose this xj points, so, these points… something like this. So, 

at these points, the residue must vanish. There can be various ways of choosing. These 

points are known as the precision points, or also sometimes known as accuracy points. 

Now, there can be various ways of choosing this precision points or accuracy points. 

They can be uniformly distributed or there can be other methods of choosing precision 

points. Good way of choosing precision point is given by Chebyshev method and they 

are known as Chebyshev accuracy points.  
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Now let us first look at what happens when we substitute this residue in the projection 

equation. So, I rewrite the residue, and if I consider the projection, the functions in this 

form using direct delta functions then we arrive at this equation of motion. This is the 

discretized equation of motion where these matrix elements are obtained like this. So, let 

us once again look at the example of the tapered bar. So, here we have a fixed-free bar 

once again and we have the geometric boundary condition at the left end and the natural 

or dynamic boundary condition at the right end. Now, we have to choose functions, we 

have to choose the comparison functions which satisfy, the comparison functions must 

satisfy all the boundary conditions of the problem, which means they must satisfy the 

geometric boundary conditions as well as the natural boundary conditions. So, let us look 

at the particular choice as shown here. So, we have these functions pj. We can check very 

easily that pj(x), so we can check… These functions satisfy the geometric boundary 

condition as well as the natural boundary condition at the right hand. Now we can choose 

this accuracy points as we have discussed. We can choose them as uniformly distributed. 

So, if you divide the domain of the bar in N parts, then you can take this uniformly 

distributed; or you can also have the Chebyshev accuracy points which are determined 

by this expression… Now this has a nice geometric visualization. This is the domain of 

the bar. If you draw a semi circle with this domain as the diameter, and you put in regular 

polygon, for example, if you want to take three accuracy points you have to inscribe half 

hexogen and the projection of this corner points on the domain will give you the 

accuracy points. So, these are the Chebyshev accuracy points. As, you can see this 



Chebyshev accuracy points will never fall on the ends of the bar. So, once you use either 

this uniform spacing or the Chebyshev spacing and calculate the Eigen frequencies, for 

uniform spacing what you obtain, so, these are the first two circular natural frequencies 

when you consider uniform spacing. When we consider Chebyshev spacing, then the first 

two natural frequencies are obtained like this. However, if you look at the exact circular 

natural frequencies, they are obtained like this. So, here what we find is that the 

fundamental circular natural frequency is in some error from the exact circular natural 

frequency, while the second one is more close. Now this collocation method has 

disadvantages that these not have the upper bound property as we saw in the energy 

based methods. 
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This approaches the exact natural frequency from below, but it can also, for example, if 

you see this comparison, this is approaching from other. So, this is a disadvantage of the 

collocation method. Now if you calculate the Eigen functions corresponding to these 

Eigen circular natural frequencies then, what we obtain is shown in this screen. 
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If you look at the fundamental Eigen function, the Eigen function corresponding to the 

fundamental mode, then within the accuracy of this plot, you see, you cannot distinguish 

the exact method with the collocation method. Though the natural frequency is in some 

error, but this can be of course rectified by considering more and more terms in the 

expansion and making it more accurate. On the other hand, if you look at the Eigen 

function of the second mode, you see, with the Chebyshev spacing it appears to be more 

accurate because the location of the node matches quite well with that obtain from the 

exact solution, while that of the uniform spacing is in some error.  
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So, we have looked at this choice; we have looked at one choice of the projection 

function H(x). Now will look at another choice which gives us what is known as the 

Galerkin method, which is another powerful method; which uses the projection 

technique. In the Galerkin method, remember that, we have expanded… where these 

capitals, these are comparison functions, then we generated the residue; we projected the 

residue on certain functions and put them to zero. Now the Galerkin method, it takes this 

projection function same as the comparison functions we used for this expansion of the 

field variable. This projection gives us these N equations from which, we are going to 

solve for this N temporal functions p(t). This when we choose this projection functions 

as same as the comparison functions in the expansion, then we have the Galerkin method 

and when we do this projection, we obtain this discretized equation of motion where this 

matrices M and K are obtained in this form. So this structure, so this is again… So we 

obtain the discretized equation of motion of the system. 
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Now, let us look at this example once again. So, these are the boundary conditions at the 

fixed and free ends. So, once again we choose the comparison functions. We will take 

two comparison functions and discretize the equation of motion. So if you do that, you 

will obtain the discretized equation in this form. Then as usual, we do the modal analysis 

assuming this structure of solution. We obtain the Eigen value problem, discretized Eigen 

value problem and from where we obtain the first two circular natural frequencies. Now 

these superscripts G indicate obtained from Galerkin. Now if you compare,  so as you 



can see that the fundamental frequency compares very well with exact, while the second 

modal frequency is in some error. Here again, if you want to have accurate modal 

solutions for the first n modes, you use an expansion with 2n terms. So, here we can see 

that the error in the in the fundamental frequency is very small as compared to the 

second frequency. When you solve this Eigen value problem, you also obtain the Eigen 

vectors k. Now these are obtained, so one can easily determine these Eigen vectors 

corresponding to the Eigen frequencies and the corresponding Eigen functions. So, the 

Eigen functions are obtained by using these Eigen vectors. So, for the first Eigen 

functions, you use the first Eigen vector in this vector product. Similarly, for the second 

Eigen function, use the second Eigen vector in this vector product. So, these are the two 

Eigen functions that I have obtain from the Galerkin method. 
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Now, here we can see the comparison of these Eigen functions with the exact solution 

that we have obtain previously. You can see the within the accuracy of the plot, the 

fundamental Eigen function is indistinguishable from the exact, for the fundamental 

Eigen function is solved from the Galerkin method is the indistinguishable from the 

exact solution. For the Eigen functions of the second mode, this is fairly close and you 

can see now that the boundary condition at the right end, the free end, is also matching 

though the location of the node is in slight error. So, in these plots, we have compared 

these two Eigen functions obtain from the Galerkin method with the exact solution. 

Now, this Galerkin method, since as we discussed that this is the method for discretizing 

the equation of motion of a continuous system, so we can use this, also when we have 

external forcing and which we will discuss later on in this course.  
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To summarize, we have studied in this lecture, projection based approximate methods, in 

which the field variable is expanded in terms of comparison functions and substituted in 

the differential, in the partial differential equation of motion of the system. Then what we 

generate is the residue, and this residue will not be zero uniformly with the domain. We 

use the weaker condition; we project this residue on to certain functions, and the choice 

of these functions decides the method. When we use the Dirac delta function, we have 

the collocation method; while if you choose the comparison function used in the 

expansion of the field variables themselves as the projection functions, then you have the 

Galerkin method; And these methods, so the projection methods, they can handle non-

conservative and non-potential forces. So, with this we conclude this lecture. 
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