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In this lecture, we will discuss transverse vibrations of strings. So, before we start 

discussing about vibrations of strings, let us look at what a string is. So, here on the view 

graph, you can see the definition of the string. 
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So, string is a one-dimensional elastic continuum that does not transmit or resist bending. 

So, this is the definition that we will use for a string. So now, I will show you some 

examples of strings.  
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So, as you can see here, this is an ordinary tag, which is like a string, because it satisfies 

the definition that I gave you that, it does not transmit; it is the one-dimensional 

continuum and its does not resist bending in anyway. So, whatever shape I give it, it will 

retain that. So, the restoring force comes, when I make it taut. So, here it so, this is, this 

tension that I give to the string acts like the restoring force, the restoring force is 

produced by the tension in the string; otherwise the string will take any shapes. So, it 

does not resist bending. This is another example of a one-dimensional continuum that 

also does not resist bending. This is the chain and this is the hanging chain. So, this also 

qualifies to be string.  

Here is a guitar string, as you can see, this is the guitar string. Now if I give it some 

bending, if I bent it, it restores back as you can see here, but still this is called as string. 

To understand the reason for this, let us see what happens in a guitar. In a guitar, the 

string is under tremendous amount of tension. Because of this tension, the primary 

restoring force is because of the tension in the string. Of course, there is this bending in 

the string, in this string which also kind of restores to its original states, shape. But when 

it is put in a guitar under tremendous amount of tension, the tension becomes the 

dominant restoring force; and hence any structural element, which is under high tension, 

qualifies to be analyzed in the first approximation as a string. So where do we find 

strings?  
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So, elements that may be modeled as taut strings are found in stringed musical 

instruments such as sitar, guitar, violin, even in the piano. So, we have seen such 

instruments, in which the sound is basically produced by the string. Then in the cables, in 

a cable-stayed bridge or a cable-car, so these structures have… Actually cables which are 

under tremendous amount of tension, and hence they can be analyzed as strings. In high 

tension cables, which are again under very high tension, they may be treated as taut 

strings. 
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So, we start with a mathematical model. So how do we model strings? Now in order to 

model strings, we will make some assumptions. So, here I have listed out some of the 

assumptions that we make in modeling the string. So, the first assumption says that the 

motion of the string is planar. So for example, here what I have, I will assume that the 

string vibrates only in this plane. Then the slope of the string is small. So when the string 

deforms, the slope at any point of time is small. The third assumption says the 

longitudinal motion is negligible. So, if I make a mark here, if you make a mark here and 

trace the motion of this mark as the string vibrates, you will find most of the time this 

mark moves transverse to the string, there is hardly any axial motion, there is hardly any 

motion in this axial direction or the longitudinal direction. So this is our third 

assumption. The fourth assumption says that the tension does not change with 

displacement of the string. So, I have put some tension in this string and as I displace, the 

tension, the change in tension is negligible. So with this, with these assumptions, we can 

now start modeling our string. 
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So, consider a string made of a material of density rho, has an area of cross section, 

which may be a function of the positional coordinate x; it is under a tension T and has 

the length l. So, this transverse motion of the string is measured by this variable w at a 

location x at a time instant t. So, so this shows a string, a stretched string or taut string, 

which has been displaced from its equilibrium position, which is the x axis. Now to write 



out the equations of motion, we will consider an infinitesimal element as we do in 

Newtonian mechanics. 

So, we will draw the free body diagram of this infinitesimal element. So, this element 

lies between x, the coordinate x, and x plus delta x. On the left this is under a tension T 

(x, t), and it makes an angle alpha. On the right end, the tension is T (x plus delta x, t), 

and the angle it makes is similarly alpha (x plus delta x, t). The stretched length of this 

element is delta S. Now to begin with we are going to write the longitudinal, the 

equations of longitudinal dynamics of this infinitesimal element. Now as we have 

assumed that the longitudinal motion of this element is negligible, so we will neglect the 

inertia force that is the acceleration in the longitudinal direction; so, we will neglect that.  

So, then the longitudinal dynamics reduces to just a force balance equation in the 

longitudinal direction; so, let me write out this force balance equation. So, this is the 

tension at this right end cosine of the angle minus the tension at the left end times the 

cosine of the angle, and along with this, you may have some external distributed forces, 

external forces. So you may have some external force distributions as I have indicated 

here, so these are force per unit length of the string. So, in the longitudinal direction I 

have for example, this n (x, t). So, I will introduce that also in this equation, and that 

must be equal to 0. Now if I divide the sole equation by delta x and take the limit delta x 

tends to 0. So, that will imply… Now we have assume that alpha thus the angle made by 

the string is very, very small. So, I can safely assume that cos alpha is almost 1. 

So, if I make this simplification or this assumption, then this equation simplifies to… 

Now this I will write in a shorter form, so this comma x in the subscript would indicate 

the partial derivative with respect to x, and we are going to follow this notation 

throughout this course. So, this then is our equation for the longitudinal dynamics, which 

is essentially a force balance equation. Now we are going to look at the transverse 

dynamics. So, I am going to use this free body diagram for the Transverse dynamics. 
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So, if I write out the equation of motion, so mass of this little element can be written as 

rho times A is the mass per unit length and the length of this element is almost delta x, 

up to a linear approximation. So, rho A delta x would be the mass of this little element, 

times its acceleration; so which I will now write, since w is the motion in the transverse 

direction, so, w,tt indicates the acceleration, it represent the acceleration of the element 

in the transverse direction; so, mass times acceleration that must be equal to all the forces 

in the transverse direction. So, on the right end, we have… and the left end we have 

minus T (x, t) sin of the angle the left end and plus the distributed force in the transverse 

direction. Now if I once again divide this whole thing by delta x and take the limit, delta 

x tends to 0; so, we have partial derivative of this term with respect to x.  

Now we have again assume this alpha to be very small, so let us see what sin alpha turns 

out to be when alpha is small. So, sin of alpha is equal to AC over AB, and if alpha is 

small, you can very easily see that this, up to the linear approximation, is almost equal to 

AC over BC; since BC is almost equal to AB, when alpha is small; and this is the tangent 

of the alpha, of the angle alpha; and this tangent of alpha can be very easily seen to be 

del w/del x. So, by using this approximation up to the linear order, I can safely write sin 

alpha almost equal to del w/del x. So, if I make this substitution here and make some 

rearrangements, I obtain the equation of motion of transverse dynamics of the string.  
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So, finally, if I look at this slide; here I have put together these two equations that we are 

just derived. So, the boxed equation is the equation of the transverse dynamics, where 

this tension, which may be a function of space and time; if there is an external distributed 

force n. Now this equation of motion, this is a partial differential equation, it is a linear 

second order hyperbolic partial differential equation. Now to solve this, we need 

boundary conditions and initial conditions. So, as you know that, since we have second 

order in space and second order in time, we will need two boundary conditions and two 

initial conditions. So, let us see, I mean first why do we need these conditions? So, so 

briefly, so this equation of motion as we have seen is derived by considering and 

infinitesimal element of the string, this in no way tells us, how the string is connected to 

the ground or if it all it is connected to the ground. So, we will need the description to, I 

mean to complete the physical description of the whole systems. 

So, we will need these boundary conditions at the two ends of the string; now and 

mathematically, if you want to understand this, you see there are, I mean, this equation 

has is second order it in space. So, it is the space derivative is of second order. So, upon 

integration, we will generate two constants of integration, and hence to determine these 

constants of integration we need the two boundary conditions. In a similar manner when 

we integrate the time part, we will again generate two constants of integration, which 

will be solved from the two initial conditions that are provided. 
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So, the boundary conditions therefore, complete the description of the system, and they 

are used for determination of the constants of the spatial integration; now these boundary 

conditions are of two types. 
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The first type is known as the geometric or essential boundary condition, such boundary 

conditions are fixed by geometry of the problem, and the second is the dynamic on 

natural boundary condition, which comes because of some condition on the force or 



moment, mostly in a in a string it will be force. So, in the dynamic boundary condition 

on natural boundary condition is a result of some force condition on the string. 
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So, let us look at some examples. So, this shows a taut string which I drew before; now 

immediately… So this is the uniform taut string.  
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So, you can immediately see that the partial derivative of the tension in the string is 0; 

there is no external force in the in the longitudinal direction of the string. So, therefore, 

this is our equation for the tension, which implies the tension is a constant. So, if the 



tension is a constant, then our equation of motion reduces to… Here we consider that the 

there is no force even in the transverse direction. So, so we see in this slide that the 

equation of motion is given by these box equations, so this is an equation for a uniform 

taut string with no external forces.  
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Now the boundary conditions now this is very simple. From geometry you can easily 

identify that at the left boundary and the right boundary, at both the boundaries, the 

displacement of the string must be 0. So, these boundary conditions are set by the 

geometry of the problem. So, the geometry of the problem says that the displacement, the 

transverse displacement of the string at the two boundaries must be 0. So these are the 

geometric boundary conditions for the string.  
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Next we are going to look at a string with free or sliding end. So here as you can see, the 

equation of motion. So the string is uniform, there are no external forces; so, the equation 

of motion will remain the same as we have discussed before; for the boundary conditions 

at the right boundary is what we want to now see. So, that at the left boundary we again 

have a geometric boundary condition which is the displacement is 0 at x equals to 0; at 

the right boundary, so to understand the boundary conditions at the right boundary, let us 

look at the right boundary in a little detail. 

So, this is the mass-less frictionless pulley to which this string is attached. So, now, I will 

draw the free body diagrams of these of this connection. So, at the pulley, you have one 

normal force from the gait, a frictionless gait, so there is only one normal force, and from 

the string, we have this tension at x equal to l. So, if alpha is the angle at any instant at 

this end of the string, then we can see that from the free body diagram of the pulley, we 

can write down the equations of equilibrium for this pulley. So, if I write out the 

equilibrium in the transverse direction, so I will write out the equation of equilibrium in 

the transverse direction for this pulley; this pulley is mass less and frictionless; so we 

have… this turns out to be 0.  

So, what this essentially tells us is that, the force in the transverse direction on the pulley 

has to be 0; now if I use the approximation that we are discussed, I obtain this condition; 

now it is so happens that the tension in this string is uniform, so this can be written 



further in this way. So, this becomes our boundary condition at the right end, so this 

condition comes from a force condition, that the force in the transverse condition on the 

pulley must vanish; and if you take the force balance in the longitudinal direction, then 

you will be able to solve for this normal reaction on the wall. So, the boundary condition 

as we can now see on this slide, is given by tension times del w/del x, at x equal to l, and 

at all time t must vanish. Such a condition such a boundary condition is known as the 

natural boundary condition. So, this comes from a force condition. So, the Force-free 

condition, Force-free boundary gives us a dynamic or a natural boundary condition. 
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Now let us look at a uniform hanging string or a chain as we have discussed. A chain 

qualifies to be analyzed like a string; so the equation of motion for this chain can be 

derived like this. 
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So, here I show a hanging chain, which is made of material of density rho, its area of 

cross section may be assumed to be uniform, for simplicity and its length is l; now as you 

can realize this chain will be under varying tension, so the tension in the chain will be a 

function of the position coordinate x. So, this is what we have to now determine. So, we 

already know that this is our equation for the in the longitudinal direction, the force 

balance in a longitudinal direction. So, this is force per unit length, n is the force per unit 

length in the longitudinal direction.  

So, if I express this, so if the density since the density of the chain is rho and area of 

cross section assume to be uniform is A; so, this is mass per unit length; so rho A is mass 

per unit length; and if I multiply by the acceleration due to gravity, will assume that this 

is an uniform gravitational field, then the transverse force distribution or the force per 

unit length of the chain is rho A g; this is weight per unit length; rho A is a mass per unit 

length, g is the acceleration, so it is weight per unit length, so which means is the force 

per unit length in the longitudinal direction in the direction, vertical direction in this case.  

So, if I substitute this and integrate out, so that is what I have, the tension is the function 

of the coordinate; now I will use a boundary condition a condition at one of the ends of 

this chain; So, it is convenient to see that, to use this condition that the tension at x equal 



to l is 0. So, that gives us c, which is… And if I substitute back and which can be 

simplified further… 

So, this is the equation of motion of transverse dynamics of a hanging chain in a uniform 

gravitational field; now again we will need boundary conditions to complete the 

description of the problem. So, let us look at the boundary conditions for this chain. 
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So, at x equal to 0, as you can see, so we have a geometric boundary condition… Now 

what happens at x equal to l? So, what is the boundary condition at x equal to l? Now, 

this is a free end of the string and this is free to string. So, one may write in a manner 

similar to what we have discussed before. So, this was the Force-free condition, so no 

force in the transverse direction, but then remember this tension at this free end is also 0; 

so, the tension is also 0. So, if you imagine the last particle of this chain, it is it has no, 

almost no restoring force, because remember that in the string the restoring force comes 

because of this tension in the string; now this end, the free end of the string, the tension 

goes to 0. So, the last particle of the string is hardly has restoring force in the transverse 

direction. So, there is the possibility at least theoretically that this displacement might 

become infinity; because it does not have a restoring force when displacement can 

become very large; but that definitely we know we have seen a hanging chain or a 

vibrating chain, and it does not go to infinity, its remains finite. So, from the physical 



consideration, we must have a finite solution at this end. So, we will we write this in this 

form, so this is an inequality. So, what this says is that the displacement of the string at 

the free and must be finite. 

Now, this when we discuss the solution of  the vibration problem of a hanging chain, the 

solution of the equation of motion of a hanging chain, we will see that there is a solution, 

which has an infinity; so what this condition will tell us, is that solutions should not be 

present, because from the physical consideration, we must have a finite displacement of 

this free end. So, this we will elaborate or discuss in detail, when we discuss the solution 

of vibration of a hanging chain. 
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So, let us see what we have discussed in this lecture. So, we have started with the 

motion, modeling the equation of motion of a string, the transverse as well as 

longitudinal. So, in the longitudinal direction, it is a force balance, because we have 

assume that the motion in the in the longitudinal direction is negligible; then we have 

derived the equation of motion in the transverse direction of the string, assuming it to be 

planar; then we have looked at the boundary conditions that come up in vibrations of… 

transverse vibrations of strings. 

There are two kinds of boundary condition as we have seen; one the first one is the 

geometry boundary condition, the second is known as the natural boundary condition or 

the dynamic boundary condition; and then we have seen a few examples of strings, of 



taut strings, and we have looked at the dynamics of the hanging chain, and in each of 

these cases we have looked at the boundary conditions that governed the equations, the 

total description of the system; now along with the boundary conditions, we also need 

the initial conditions, which we have not discussed as yet. 
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So, so as I mentioned that we need two initial conditions. So, these initial conditions are 

usually specified as the initial deformation of the string and the initial velocity 

distribution over the string. So, with these two initial conditions, one on the 

displacement, other on the velocity; we can now completely solve or uniquely solve the 

equation of motion of vibrating string. So, with this, we complete this part on the 

transverse vibrations of strings. 

Keyword: dynamics uniform taut string, boundary conditions and initial conditions, 

string with free/sliding end, uniform hanging string/chain. 


