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Lecture - 13 

Theory of Flat Plate Collector - Liquid Based (B) 
 

So, we shall continue with, our procedure to obtain the overall loss coefficient. We have 

excess the loss, from the plate to the cover one, and if you consider the top plate, from 

which the losses taking place direct to the ambient. 
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The radiative heat transfer coefficient, from the cover 2 to the ambient, which we shall 

designate as h r c 2 a. Now we have already expressed, that this radiative loss, is to T sky 

and not T ambient, but since everything we want to write it as overall loss coefficient, 

multiplied by T p minus T a, or T f minus T a, or T f I minus T a, we would like to base 

it with respect to the ambient temperature. So, we can write down h r c 2 a is epsilon c 2 

times sigma T c 2 plus T s times T c 2 square plus T s square times T c 2 minus T s upon 

T c 2 minus T a. Now do not worry about this long expression, you can easily work out 

this, what all we try to do was, the radiative loss with a heat transfer coefficient of h r c 2 

a, from T c 2 to T a, has been expressed as equivalent to epsilon c 2 sigma into T c 2 to 

the power 4 minus T s or T sky to the power 4, which is nothing, but epsilon c 2 sigma 

times T c 2 plus T s times T c 2 square plus T s times T c 2 minus T s. So, this is 



artificially written, as if h r c 2 a, if it is multiplied by T c 2 minus T a, it will give me the 

actual radiative loss, from T c 2 to T sky. So, that in may overall heat loss coefficient, 

this is based with reference to a temperature, above the ambient temperature T a. 
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Now T s is given by 0.0552 T a to the power 1.5, where T s and T a are in Kelvin. In 

other words, this is a estimate, you measure the ambient temperature, and you measure 

the a temperature of let us say water kept outside, which is cooler than the ambient, and 

from where you estimate the heat loss, and that should have been lost by infrared 

radiation, from the body under consideration, thereby giving you an estimate of T sky. In 

other words, you would have reached a lower temperature for the water in the bucket, in 

the evening when there is no sunshine, compare it to the ambient temperature, if the sky 

temperature had been so much, and the loss is given by the amount epsilon c 2 T sky to T 

water to the power 4 minus T sky to the power 4. 
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And of course, there is a simpler relation also, simply T sky is nothing, but ambient 

minus 6 degrees, it works reasonably well. So, my resistance now R 1 1 upon wind heat 

transfer coefficient already known to us, by the radiative loss coefficient h r c 2 a. h r c 2 

a is like exactly h p c 1 or h r c 1 c 2 all the other radiative coefficient. Since the loss 

takes place to the sky temperature, it has been sort of normalized, with respect to T c 2 

minus T a, rather than T c 2 and T square. So, now, we can express R 2 as. 
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So, it is the summation of the convective heat transfer coefficient between cover 1 and 

cover 2, and the radiative heat transfer coefficient between cover 1 and cover 2. So, you 

can again write h r c 1 c 2 as sigma T c 1 plus T c 2 times. This is exactly similar to h r p 

c 1, where we wrote T p plus T c 1 into T p square plus T c 1 square, upon the 

corresponding emissivity’s. So, now, we are in a position to calculate, the loss coefficient 

from the top U T, as summation of the resistances R 1 R 2 R 3 inverted; that will be 

corresponding to the second figure in the thermal network. First one is showing the 

parallel paths, the second one order them in series, equivalently expressed as R 1 R 2 R 

3. 
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And the bottom loss coefficient U b is straight forward, R 4 plus R 5. R 4 is the 

conduction resistance, and R 5 is the convective plus radiation resistance, and R 4 is 

given by L upon K, where L is the thickness of the insulation, and K is the thermal 

conductivity of the insulation. And usually R 5 is neglected, because T b is almost just 

pretty close to T a. 
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So, back loss coefficient U b, is simply given by 1 upon R 4 equal to K by L. Now my 

overall loss coefficient U L, equal to U b plus U t. Of course, there will be exceptions, U 

L will not be equal to U t plus U b, if the working fluid comes in contact, comes in direct 

contact with a heat losing surface. In other words, all that is being considered as U T, is 

not a loss, a part of it is going to the fluid also. So, we shall come to that type of collector 

configurations, a little later, at least one of them. 
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So, having done these things, what did we do. We assumed a single node T p T c 1 T c 2, 

from here it loses the radiation to T sky, and there are parallel convection and radiation, 

and then the back temperature T b to T a radiation, and convection, and by conduction, 

from plate temperature T p to T b. So, we estimated of course this R 5, is neglected; that 

means, no heat loss by convection radiation from the bottom. 
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And we found out U b is equal to K upon L, and U t is 1 upon R 1 plus R 2 plus R 3, 

where the resistances R 1 R 2 R 3, or the convection plus radiation resistances, between 

the plate, and the cover 1, and between cover 1, and cover 2 and cover 2 to ambient. If 

there is only one cover, we will not worry about R 1 and it will be only R 2 and R 3. So, 

how do we estimate now U L; the idea is you need R 1 R 2 R 3 R 4, R 4 is simple it is L 

by K. 
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So, we shall gone to estimate this U L. Now, the convective heat transfer coefficient h p 

to c 1 h c 1 to c 2 and of course, h w are known. Our heat transfer knowledge, gives us to 

method to calculate the convective heat transport coefficient between the plate, and a 

parallel cover one, between cover one and cover two, and the wind heat transfer 

coefficient, which we have already given. Now we also have got, h r p to c 1 h r c 1 to c 

2 and h r c 2 to ambient. These are radiative heat transfer coefficient, which in general h 

r multiplied by some delta T, gives the radiative loss. Though we know, that the radiative 

loss is proportional to the difference of the fourth power of the temperature. This has 

been expressed similar to, that of convective loss. Then non-linearity is absorbed, in the 

definitions of the radiative heat transfer coefficient. 
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Even within the frame work of, properties being independent of temperature; that means, 

the thermal convective does not change, heat transfer coefficients we have a method of 

estimating it, and the viscosity, density or they do not change with temperature, but even 

with all these assumptions, my h r p to c 1 h r c 1 c 2 and h r c to a they are functions of 

T. In other words we need T p T c 1 T c 2 T a and of course T sky. This T a is a 

metallurgical property which we know, T sky can be estimated from the relationship, so 

these are not an issues. But T p T c 1 T c 2 have to be known in order to calculate my 

radiative transfer coefficient from the plate to the cover one, or cover one to cover two, 

or cover two to ambient. 
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So, now, we have got a interesting problem. Unless we know, T c 1 and T c 2 we cannot 

estimate h r‘s in general. Maybe I can add a T p also T a is know. So, radiative heat 

transfer coefficients cannot be estimated, unless I know the temperatures. And 

temperatures cannot be estimated, unless we know the heat transfer coefficients. So, it is 

a tricky situation, what do we know. Of course, you might ask me, what about T a. I am 

sorry, what about T p; the plate temperature. So, this is assumed known, because this is 

in operating condition. So, if a solar collector is operating to deliver energy, at a certain 

temperature, we will be having, that temperature to be the corresponding plate 

temperature, which will depend upon the internal resistances, which we need to know the 

theory, so T p is assumed to be known, for a given application. Or alternately we are 

trying to estimate the overall loss coefficient, for a number of values of T p, and we will 

pick up the appropriate overall lose coefficient, depending upon the actual operating 

condition. So, even if T p is assumed as an operating condition, T c 1 and T c 2 are 

essential to calculate U L through various resistances. 
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So, this naturally involves a trial and error, or an iterative procedure. So, step number 

one; we will guess T c 1. Let the first guess be T c 1 1. So, in case my first guess is not 

correct, I will go to second, if second one is not correct I will go to third and so on and so 

forth, and we will try to iterate, and we will set up a procedure of the principle behind 

iterating this exception. So, the first step is, T p is known, let us write it now T p known, 

so I guess T c 1, and the first guess is designated as T c 1 1. So, calculate q loss top, and 

this is. Since I am using the guess one, I will qualify it with a superscript of one, which 

will be h p c 1 plus h r p c 1 1, because it is obtained with T c 1 1 times T p minus T c 1 

1. So, let us be very clear, we guessed a value for T c 1 as T c 1 1. The loss that is 

obtained from plate to cover, because I know the plate temperature, is the conductive 

heat transfer coefficient, plus the radiative heat transfer coefficient, estimated with a 

guess temperature of T c 1 1, multiplied by T p times T c 1 1. 
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Now having, this q loss top, is the same, estimated as, from plate two cover one or cover 

one to cover two, or cover two to ambient, and the sky part which we have already taken 

care of, in defining the radiative heat transfer coefficient. So, let us this q loss top, will 

help us estimate T c 2. Again I will qualify it with a superscript one; that is T c 2 1 

obtained with, q loss top one with T c 1 1. 
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So, this relation will be q loss top 1 should be equal to h p c 1 plus h r p c 1 1 times T p 

minus T c 1 1, should be the same as h c 1 plus c 2 plus h r c 1 plus c 2. Again I shall 



qualify it with a superscript 1, because it follows from my first guess times T c 1 1 minus 

T c 2. Everything is known here except T c 2, so this enables us calculate T c 2. Now 

from this, q loss top 2, because q loss one is T p to T c 1 1, which we have guessed. The 

same amount of energy should be going, from cover one to cover two. Now from the top 

cover I will get a different number, which will be h w plus h r c 2 a times T c 2 1 minus 

T a if you want to be precise, we can call this h r c 2 a 1, because this has made use of T 

c 2 1.  

So, now, what is the difference between these two, this is the loss taking place from 

cover one to the plate to the cover one, and that should be the same as cover one to cover 

two, which enabled us to calculate T c 2, and from the T c 2 my guessing is over, and I 

should be able to calculate what would be the top loss, from the outer cover to the 

ambient, by convection and by radiation. And this radiative heat transfer coefficient is 

calculated based upon, T sky T ambient and T c 2 dashed. So, I compare these two, and 

if we have q loss top 1 minus q loss top 2 by anyone them, in fact, it does not matter, but 

they converge. Here I put a modulus sign, so that we really do not know, whether q loss 

top 2 is higher or less, but our idea is, let us say this should be less than 0.05; that means, 

the difference in the guest heat transfer from the top, because of a guest cover 

temperature, should balance with, whatever is the outgoing heat loss, as a consequence 

these two should not differ by more than 5 percent. I may set it as 2 percent 10 percent, 

depending upon the accuracy, what we need. 
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If this is satisfied and T c 1 1, and T c 2 1 are accepted. If not, if it is greater than 5 

percent, 0.05 say, then change, instead of T c 1 1, change to T c 1 2, which will be some 

T c 1 1 plus or minus delta T. So, I change the initial guess by an amount of delta T, and 

one can physically argue if q loss top is higher than q loss one, whether T c 1 should be 

increased or decreased, so that physical check one can do, and go on the right direction. 
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So, this is a sort of involved calculation, and it requires iterations, unless you know the 

guest values and you have to on top of it, most of the time h p c 1 and h c 1 c 2, are the 

free convective heat transfer coefficients, with themselves will depend upon the 

temperatures. So, if they start changing, the overall loss coefficient may not be different 

looking, but my individual component convection and radiation losses, can be quite 

different. However, this procedure is can be in a routine in a simulation package, and one 

can calculate the overall loss coefficient, to make our life a bit easier. 
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A correlation for U T has been developed, and this is by Klein once again, from the 

University of Medicine, and so the iterative procedure may be called cumbersome. 
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And particularly the heat transfer coefficients involved, are free convective heat transfer 

coefficients, they also depend on the temperature. Though, in this particular instance, 

which we assume, we use the current h p c 1 or h c 1 c 2. Though this is a long 

expression, U t, I shall write it down, so that you can also note down. I shall give a 

printed hand out, so that the deficiency if any, by hand writing, carefully will not be there 



in the print out. So, this looks a really difficult relation, I am not sure whether the 

iterative procedure takes time, less time of this relation, and it is not all, where of course, 

N is the number of glass covers. 
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So, you can calculate for one glass cover or two glass covers, but the assumption is, 

epsilon c 1 is equal to epsilon c 2 equal to epsilon g. The relation you will find is written 

in terms of epsilon g. Then f is another expression, then the constant c 520 into 1 minus 

0.000051 beta square, and this is for 0, less than beta less than 70 degrees. And for 70 

degrees less than beta, less than 90 degrees, use beta is equal to 70 degrees. Then e is a 

0.43 into 1 minus 100 by T p m, beta of course, is the tilt in degrees. 
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T a, this should be in Kelvin, and T p m mean plate temperature, again in Kelvin, and h 

w; the wind heat transfer coefficient, in watts per meter square degree centigrade. So, 

there is a convenient method of calculating the overall loss coefficient, which will 

involve an iterative procedure, by guessing the cover temperatures for a given operating 

condition, or the top loss coefficient can be calculated by the correlation due to plane, 

though it is a long expression, it does not involve iterative calculations.  

So, basically what we did today, is gave few configurations for liquid based solar 

collectors, and qualitatively assessed, what is the temperature variation in the direction of 

the flow, and in the direction perpendicular to the flow direction, and then we made a 

number of assumptions in the analysis, most important being steady state, and the 

properties do not change, and the N number of 14 assumptions, and treating the two 

dimensional problem as, two one dimensional problems. Then we have expressed the 

thermal network, to calculate the overall loss coefficient, and then a simple correlation, 

to calculate the top loss coefficient, has been proposed by Klein, simple in the sense the 

expression is complicated, but does not require any iterative calculation. 
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So, what we shall do is, what is the, now temperature variation, in the solar collector 

liquid based. Now what you have got, is something like this, you say this is x, and this is 

y. 
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If I take, exaggerated, this is an inner diameter, from D naught, and inner D. Let the 

thickness of the sheet be delta, and this tube is joined, with a solder or some bondage. So, 

this is the mid plane, and this is the mid plane. So, I have to have a simple, some W 

minus D by 2 or W is the distance between the centre to centre, and we have got a 



number of elements, repeated like this, in the collector, they are all joined, and each one 

is a half a sheet on this side, and half a sheet on the other side, with a tube in between 

putting between. 
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And if we plot the temperature in the x direction, heat is flowing towards the tube, which 

is at T f, which is lower than T p. So, the temperature is highest, at the symmetric plane, 

because again it will continue like this, then another tube, again it will continue like that. 

So, we have taken a half a sheet on this side, and another half a sheet on this side for a 

particular tube, this is in the x direction. We are saying that the temperature, around the 

periphery is negligible, so this is n constant temperature. 
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If I take this picture, that seems to be too much, and if I go in the direction of x. So, this 

will be increasing like this, as I go along L, because it is gaining temperature. So, if I plot 

it, with respect to y, and T this will be at the beginning of the collector, this may be T on 

the sheet, at fixed x. Now this will be T f, which will be entering at T f i and exiting at T 

f o. So, this is the temperature variation in the y direction, at a fixed x, and whether it is 

high or low depends upon whether it is a fluid region in tube, or the fin region and where 

we are. And in the x direction it is maximum at the mid plane of the sheet, and uniform 

temperature across the tube, and again it increases, that element is reproduced. 
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So, we can analyze this particular element. So, temperature distribution between the 

tubes, and the collector efficiency factor; so, that is what I have already shown the 

picture. So, that is what the picture is. So, this is one half I will show, of some thickness 

delta, and here is the tube with the inner diameter of D i and outer diameter D naught, 

and this continues of course, and here is the bond. Let this thickness be delta, and if we 

centre of the tube to the centre of the sheet half of it, that will be W by 2, and if this is D 

capital, this will be W minus D by 2. So, let us see the, this is my x. So, centre of the 

tube to the symmetric plane is W by 2, the distance between the symmetric plane, and 

the beginning of the tube is hence W minus D by 2, if capital D is the diameter, it is 

given by some bond conductance, and then at the base will be a temperature of T b, 

inside will be T f, over here, it will be a T x. 
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Now if we take this repetitive element, because of symmetry, the also called insulated; 

that is this d T d x equal to 0 at x is equal to 0 of the previous picture. So, if I just forget 

about the tube part, this is my base temperature T b, this is the insulated portion, or d T d 

x 0, and this is my W minus D by 2, and here is the incoming solar radiation, and here I 

measure my x, I take a elementary volume of width or length or delta x, and of course, 

this is delta. 
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So, I shall just make the energy balance, if I once again, this is the control element. 

Those of you who are familiar with the heat transfer course, you know that this type of 

analysis have been done a large number times, and here enters minus K delta d T d x at 

x, and what goes is minus K delta d T d x at x plus delta x, and what comes on to this is, 

s times delta x, and what goes out is U L times delta x into T minus T a. So, I can write, 

enter minus K delta d T d x at x, absorbs s times delta x, loses U L delta x T typically 

function of x minus T a, and leaves minus K delta d T d x at x plus delta x. 
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So, this is what we are having, and if you want to make a energy balance, and we are 

assuming unit length, perpendicular to plane of the board or screen. So, S into delta x 

enters, plus minus U L into T minus T a, leaves plus minus K delta d T d x enters, and 

then leaves minus K delta d T d x at x plus delta x, this should be equal to 0. I prefer to 

write this equation, just not as an equivalent part in terms of physics, this is an entering 

radiation that is absorbed, and U L into T minus T a leaves it is a loss, and on one side 

the entering is given by Fourier law of conduction minus K delta d T d x, and what 

presumably leaves, the control element is, the same thing at x plus delta x, so there is a 

minus sign. Now the gradient of d T d x is going to take care of, whether this is positive 

or this is larger, this is smaller etcetera. This minus K delta d T d x, at x plus delta x 

equal to minus K delta d T d x at x plus d by d x of minus K delta d T d x into delta x. 
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So, if you plug in these values, you will get… So, this second derivative comes from that 

d d x of minus K delta d T d x, and if I equate that this is what we will have. And this a 

second order equation requires two boundary conditions which will be, d T by d x is 

equal to 0 at x is equal to 0; T equal to T b, at x is equal to W minus D by 2, at the base 

of tube this is given by W minus D by 2, x is equal to and it is T b. And by virtue of 

symmetry, we call the insulated thing as heat transfer terminology, because the d T d x is 

0. And if you introduced m square equal to U L upon K delta, and psi equal to T minus T 

a minus S upon U L, this becomes, and the boundary conditions in terms of psi be… 
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So, we have secondary equation; in the x direction, we had considered half of a repetitive 

element, from the mid plane of the sheet up to the beginning of the tube; and you should 

be familiar with this equation in the heat transfer, it is nothing but exactly the fin 

equation. And you can see that m squared is U L up on k delta, and in fin case m squared 

is h into p upon K A. So, you have a length dimension extra here, and another length 

dimension extra here, instead of that you will have U L by K delta in this case, otherwise 

it is nothing but the fin equation. We will try to get the solution in the next lecture, and 

until then bye. 


