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Welcome to lecture 4 incompressible fluid flow related to fluid drive. This is under module 2

fundamentals of fluid flow and properties.
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Control volume method is applied in analysis of fluid power in general. This is because the

moments  of  fluid  particles  in  a  space  are  not  much  of  our  interests  as  in  general  fluid

mechanics based on Newtonian theory. Rather we are interested in the moment of volume of

fluid through the conduit.
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Now let us consider conservation of mass. The rate of mass flow into the control volume

equals the rate of mass flow out plus the rate at which mass accumulates inside. Now let us

consider a control volume, fluid is flowing inside this volume and then we consider a velocity

in normal direction at a point on the volume which is Vn and obviously which is having a

straight component V. Now mathematically we can write Rho Vn dAs is equal to minus dmcv

by dt is equal to minus d by dt integration of Rho dv. Now in this case, As is the normal

surface area, Rho is the density which we have already discussed, Vn is the normal velocity

and this normal velocity, it is importantly is positive when directed outwards that means the

direction shown is positive. That must be equal to time rate of change of accumulated mass in

control volume, mcv is the accumulated mass. Now this means that the minus sign is given

here, the reason is that if the mass is accumulated inside then Vn will be in the opposite

directions. If it is going out then it will be minus that must be equal to the elemental mass of

control volume we should consider the rate of change of elementary mass of control volume.
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Now application of this conservation of mass or momentum theory is that. Let us consider a

simple conduit sorry, a vessel with a conduit. Now flow in to this control volume through the

left side where the area is A1, V1 is the velocity and that area surface area of this vessel is At

and height of a datum (())(5:18) line is L where, the area is A2 and velocity is V2. This means

that along this line when the flow is going in velocity is V1, flow is going out velocity is V2,

area of this outlet is A2, area of this inlet is A1 and At is the surface area of this vessel and L

is the height from this datum line. 

Now for steady state condition, we can write Rho V1A1 is equal to Rho V2A2. What does it

mean the steady state conditions that there will be no change in this volume? Where, L is not

varying. Now for unsteady flow into tank that is this vessel, L will vary, and the expression

becomes RhoV1A1 minus RhoV2A2 is equal to Rho At dL by dt. This means dL by dt is will

be positive if this height is increasing and this is automatically it will be negative till L is

decreasing.
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Now conservation of momentum. The rate of change of momentum of the system in any

direction is expressed as the sum of the rate of change of momentum of the material inside

the control volume, which we have considered as a va small va in the same direction and net

rate  of  outflow  of  momentum  through  the  control  surface  in  the  same  direction.  It  is

expressed as Fx is equal to d by dt integration of Rho vx dva over the volume va the control

volume va This vx is the velocity in x directions plus integration of Rho vx Vn and dAs. It

will be in the y directions as you look into these equations only we will considering here the

expression  is  same,  velocity  in  y  direction  and  here  also  we  consider  the  velocity  in  y

directions. Similarly in z directions we consider a velocity vz here and also here. For steady

flow first term of right hand side is zero. If it is a steady flow then there will be no change in

this whereas, there may change in this surface area and accordingly this equations will be

reduced.
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Now steady flow example, let us consider another tank. It is a closed. It is having a inlet and a

outlet. Now let us consider at the inlet area is A1, oil is having density Rho1 and velocity V1.

At outlet  it  is Rho2, velocity V2 and area is A2. Now Rho1 and Rho2 may be equal for

incompressible fluid if there is no change in temperature. Now for this type of flow you will

find that if we do not apply a load this will move, because this velocity obviously will be

higher than this and a force will be generated here. Now to balance this for equilibrium we

apply a load Fx and therefore, the relation we can write inflow of x-momentum is equal to

V1Rho1A1V1 that is equal to Rho1A1V1 square. Is it clear? This is the volume flow rate and

with the velocity. So we get this is the x-momentum.

Similarly, outflow we get it Rho2A2V2 square. Now equating, we get the external force Fx is

equal to Rho2A2V2 square minus Rho1A1V1 square. This means that we have to apply this

force for the equilibrium of this body. Let pressure condition be P1 is equal to P2. This means

that  here  pressure  and  here  pressure  will  be  same.  Then  from  continuity  consideration

incompressible  flow  Rho1A1V2  is  equal  to  Rho2A2V2  and  therefore,  Fx  will  be

Rho1A1V1V2 minus V1,s I think I have made mistake, it  is not pressure conditions. The

pressure condition remains same for which Rho1 and Rho2 remains same. Here I would like

to mention the pressure remains same as well as temperature also remains same so that we get

Rho1 is equal to Rho2. 
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Now unsteady flow example. How the pressure difference P1 minus P2 is related to rate of

change of flow rate of a frictionless incompressible fluid in a uniform tube of length L? We

have considered a tube circular tube and we have taken a segment of length L. This is of

uniform cross sectional area A and the tube is also rigid. Now flow in is Q1 and flow out is

Q2 and we also for general tube we consider that density here was Rho1 and density this side

is  Rho2, pressure is here P1 and P2. We consider  that pressure is  changing. Maintaining

continuity we can write RhoQ1 is equal to RhoQ2, again in this case we have consider Rho1

is equal to Rho2 that means density is not changing.

In most of the fluid power analysis for small conduit if length is not very large and if there is

not too much change in pressure and the temperature, then we may consider Rho1 is equal to

Rho2. This simplicity is required to avoid the complicacy in the calculations and in most of

the cases; the error will be negligible small. Therefore we can write Q1 minus Q2 is equal to

0. This is for incompressible fluid.
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Now the momentum equation gives P1A minus P2A is equal to Rho QV minus RhoQV minus

d by dt Rho ALV, A into L is the volume, V is the velocity and Rho is the density that is the

mass. So rate of change of mass minus the mass in. Now this gives clearly P1 minus P2 into

A that is the force is equal to Rho AL d by dt Q by A, if we equate this we will arrive here and

this gives clearly RhoL dQ by dt as A is constant. This A will cancel out. This means that the

force net force available due to this Rho is mass density into length into time rate of change

of flow. This Q is flow rate. So this is time rate of change of flow rate. So final equations is

coming P1 minus P2 RhoLA dQ by dt.
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Conservation  of  angular  momentum.  In  a  steady  flow  centrifugal  pump,  let  Vt1  is  the

tangential velocity at radius r1 at entry. If you think of the centrifugal pump, then you will

find that entry at the toward the centre and outlet is towards the outer periphery. Now in fact,

it works on hydrokinetic energy. In that case, when the impeller inside is rotating with the

volume of fluid. Initially there is air, then this fluid mass gets momentum and it is discharge

outside in terms it creates a suction pressure at the inlet. Anyway after let us consider it is

pumping an incompressible fluid. In that case, let Vt1 is the tangential velocity at radius r1 at

entry. This means that if I consider a circle at entry then tangential velocity of the mass of the

fluid again a let us consider a control volume. Now same thing when it is being discharged,

the tangential velocity is Vt2 at radius r2. Then we can write the ideal input torque is equal to

T is equal to r2Vt2 minus r1Vt1 into Rho again density into the flow rate.
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Now let us consider one dimensional frictionless and incompressible streamline flow area

change. Now in this case, again we have consider a conduit, which is having inlet area is A1

outlet area is A2. In this closed vessel or closed tank, let us consider at the inlet the u1 is the

intrinsic  internal  energy per  unit  mass  of  fluid.  Now this  is  a  little  difficult  to  have  the

consent, because inside the fluid the internal intrinsic internal energy may change while it is

flowing from one side to the other due to addition of some external energy or going out the

energy from the inside of the conduit or the control volume.

Now this one again having a density Rho1, velocity V1, pressure P1, z1 is the height of this

fluid from a datum line and W is the weight flow rate of fluid, okay. In outlet side also we

consider u2, Rho2, V2, A2, P2, z2 and W. Clearly, this in this case, what we have consider in



this system the z1 is equal to z2, because this is a horizontally placed we have neglect that

part, Rho1 is also is equal to Rho2, because there is the change in pressure not changing the

density or whatever change is there that is negligibly small and also u1 and u2 that means

these  is  no  change  in  intrinsic  internal  energy. Now  then  simply  we  can  develop  these

equations and we can neglect also z1 and z2 as they are equal of these equations. Now these

equations is very well known equations (())(22:22).
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And with this equation, we will see next that if we now add some energy, then what will be

the changes in these equations. Now here as I have told, this is a frictionless that means there

is no friction between the fluid and the conduit, we have neglected that part. That is there

always there in a conduit there will be friction, but we have neglected that part and again this

is we are what we are developing these equation that is for the incompressible streamline no

turbulent flow also, then equation will be different, only thing there will be change in area.

Now what we have done? We have added some external work. So that is symbolized by this

say let us consider that (())(23:30) a fan or impeller is being driven and it is energy being

added there. Now also we are adding some heat and there is so this is the heat flow inside.

Now why we are considering the such things? The in fluid power usually this external work

will be there on the fluid and this heat is automatically generated it due to the temperature

rise due to change in pressure, due to the change in internal energy that we can consider in

this form as well in some cases, heat also added from the outside. 
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So what will be the equation? Now we introduce the energy equation and using the control

volume concept. Then what we find that the same equation which we have consider earlier.

We consider this u1 and u2, we consider that there will be change in you see this intrinsic

energy as we are working on that, we are also adding the heat and we have we have also kept

then this height term here and then the energy added is writurn in this form. This is the work

added to this minus dQh by dt divided by W by g. Now Ws is the shaft or shear work done

and Qh the heat flow to control volume. The here the question is that if we why it is negative.

The heat flow in actually reduces to the this energy.
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Now if we do not add any external work to the system then dx by dt is equal to 0. Therefore,

the total equation will be reduced in this form. Obviously we have consider z1 is equal to z2

and we can write dQh by dt is equal to W by g u2 minus u1 is equal to W by g Ch T2 minus

T1. Whereas Ch is the specific heat, T1 is equal to temperature before heating and T2 is the

temperature after heating. 
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Now we consider frictionless flow through nozzles and orifices. Now here we have consider

a again a vessels of large reservoir and where we are having a small hole, which is an orifice.

Now this is known theory to you, you will find that oil will flow out and you will find that the

stream will have a little less area than the orifice area at a certain distance and then again this

area will increase. Now the minimum area as you know, it is called vena contracta. Now for

this  one we can write  the equation  in this  form. Here,  the velocity  at  the  entry we may

consider 0, we are considering this area a little away in the left side from the orifice and then

we are considering the velocity V2 at the vena contracta. Then this equation can be writturn

in this form that means velocity here we can write 2 by rho P1 minus P2.

Therefore, the mass flow rate can be writurn in the form of Rho into Q is equal to Rho A2

into V2, because A2 is the area here is equal to Rho A2 square root of 2 by Rho P1 minus P2.

Now the A2 is the area at the vena contracta, which is not known. It is not it is neither we can

measure the area there. Now to take care of that what we do that RhoQ into Cd into A0

square root of twice Rho P1 minus P2. Where, Cd is the coefficient of discharge and A0 is the

area of the orifice. Now again you know that coefficient of discharge is equal to the area



contraction coefficient and another coefficient velocity. So combining this Cd we use for fluid

flow. 

Now in case of fluid power with incompressible flow for a suitable orifice normally this Cd

value to remain more or less constant. Of course that depends on the orifice area. In most of

the calculation in fluid power particularly in oil hydraulics, this Cd value may be taken as

0.62 later when you will come to valve flow I will show you that how Cd can be taken more

or less constant for fluid power analysis. Also a care is taken to make the orifice, there are

various type of orifice in fluid power components starting from a circular hole to the variable

area, but the care is taken so that Cd more or less given constant. The final equation here the

2.4.24  is  Q is  equal  to  Cd  A0 square  root  of  2  by  Rho  P1  minus  P2.  This  we should

remember, because very often we need to use this equation. Other equations which I have

shown normally when we analyze the inside flow in a valve then it will be repair (())(32:02),

but normal cases this equation will be more useful.
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Now viscous flow through the capillary passage. Now here one important factor we consider

which  is  Reynolds  number. A Raynold as  you know is  the  scientist,  he developed these

equations  where,  Re is  equal  to  UD by Rho.  Now this  is  the this  is  kinematic  viscosity

already we know that this is dynamic viscosity by density. Here of course we used in other

form, normally we use Rho. Now U is equal to the velocity of fluid in conduit. Now normally

this Reynolds number becomes very high, where D if we consider D is equal to hydraulic

diameter that is equal to 4 into flow section area, whatever may be the area we consider 4 into

flow section area divided by flow section perimeter. 



Let us consider it is a circular one, then what we will do 4 into pi r square divided by 2pi r, 4

into pi r square divided by 2pi r. So this becomes 2pi r that is equal to pi d. This hydraulic

diameter. Now in case of fluid power we consider a reduced Reynolds number, which is

expressed as R star is equal to UL by sorry, this is not Rho Nu into h by L whole square.

Normally you will  find this  is  much much 1 and where,  the L is  the length of capillary

passage and h is equal to height of the gap or capillary. This is for an example even in a pipe

we can consider L is the length and h simply the inside diameter of the conduit, but this is

more useful where the flow between two parallel plates or some capillary passage.
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Now with this I finish this lecture and this note is prepared based on these two books the

control of fluid power by Martin and McCloy and Blackburn and Reethof and Shearer by

fluid power control. Also, I have followed the another book hydraulic control system which is

by Merritt, but most of the equations that I have followed from these two books. Thank you.

 


