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In our previous lecture, we were discussing about the weighted residual method, and its 

basic understanding. So, let us take up from there.  
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Let us say that you have governing differential equation with a linear operator on y, L y 

equal to 0. So, if you now substitute y approximate, then L of y approximate will not be 

equal to 0. And we call this equal to some residual which is non-zero. Our objective is to 

have a method which tries to minimize this residual. So, what is done? In the weighted 

residual method is this residual is multiplied by a weighting function, and it is integrated 

over the entire domain. So, here if it is a one-dimensional problem the domain is x; 

where y is a function of x, integrated over the domain, and this is said to zero. So, the 

error is minimized in an weighted integral or weighted residual sense.  



Now, the big question remains that what should we take as the approximating function. 

So, the approximating function is a trial, it is a guess. So, you are trying with a function, 

and trying to make sure that the the function is trying to make sure that the function is 

appropriate in a way that it minimizes the error in an weighted integral sense. Now, let us 

see how we how we can achieve that. We will look into an example, and try to follow 

that example to see that how that is achievable, but before that we learn certain 

terminologies, and concepts which we borrow on to the examples. 

So, first example first terminology is the trial function. The trial function is nothing but 

the y approximate, and in this trial function the y approximate can be chosen in many 

ways. We will see later on that polynomial is one of the convenient methods or one of 

the convenient choices of the function. But you it need not always be a polynomial 

function, it can be any function provided it satisfies certain characteristics. What are 

those conditions; so, the trial function should satisfy the essential boundary condition 

should be continuous. Again we should keep in mind, that it should satisfy the essential 

boundary condition is one of the very key requirements. Essential boundary condition is 

basically, what is the value of the variable for a second order problem as an example.  

So, for higher order problems - it can also be the derivative. Whatever it is we have seen 

earlier through the variational formulation, that what do we mean by essential boundary 

condition. And that essential boundary condition should be such that, it should be or 

rather the choice of the trial function should be such that it satisfies the essential 

boundary condition. It should be continuous, and when once we say it should be 

continuous, it should be continuous over the domain of the definition of the function. 

And derivatives of trial function must be square integral. 

So, derivative square integral means for example, if you have y dy approximate dx whole 

square integral of that one must be less than infinity. So, it should be a bounded integral -

square integral means, integral of square of the derivative, basically you are doing. So, 

this type of requirement is a very very important, and stringent requirement. It shows an 

un it shows a roundedness of the function. So, so that its integral is not unbounded. Why 

this type of thing is necessary, because if you have say an operator a y, y bilinear 

operator, then often the bilinear operator can take the form of this square. And if it is 

integrated, its integral should be less than infinity. So that, it that such functions are 

bounded, that is very very important. 



Now, you can also have higher order derivatives. We have to see that what is the highest 

order derivative if necessary. If you have a variational formulation for a second order 

differential problem, you may at most require a first order derivative continuity, because 

you have already reduce the order of continuity by integration by parts. So that, your 

derivative requirement - highest order derivative requirement for satisfaction of the 

continuity is the first order derivative for a second order problem. 

Similarly, for a fourth order fourth order problem, it would be a second order highest 

highest order derivative continuity requirement. So, if it is a second order problem, then 

we only requires up to the dy dx type of term for your continuity requirement. You do 

not require, any higher order derivative for corresponding to your variational 

formulation. However, you will require that, if you do not go through the variational 

formulation. 

So, you you may also have the weighted residual method implemented without going 

through the variational formulation, because variational formulation gives us a clue that 

you have to multiply this with a weighting function. Now, weighting function is having a 

same meaning as that of a variation or a similar meaning as that of a variation. But it 

does not mean that, you have to go through the roots of variational formulation.  

We will see that you can have any arbitrary choice of the waiting function of of course, 

consistent with certain constrains. But the whole understanding is that for a second order 

problem also, if you do not go through the variation formulation, you will require a 

second order derivative continuity. If you do not reduce the continuity requirement 

through integration by parts. So, the variational formulation is sometimes with 

formulation, because you reduce the or you weaken the requirement of the order of the 

continuity of the approximating function. But if you do not required, if you if you do not 

employ that as a strategy, and simply do the integration without doing integration by 

parts; then obviously, you required the continuity up to the highest order derivative.  

So, it is not the first order derivative for a second order problem, it is then a second order 

derivative for a second order problem. This we must keep in mind. So, depends on 

through which route we are we are going, are we going through integration by parts route 

or we have straightaway integrating without integrating by parts. 



Now, this type of function. So, here the first order derivative is square integrable, we call 

it an H 1 function - in functional space. So, there could be several types of functions, like 

H 1 function, H 2 function like that. So, H 1 function in a functional space is such that 

that its first derivative is square integrable. If it is H 2 function then its second derivative 

has to be square integrable like that. So, this superscript stands for the order of the 

derivative which is square integrable. Now, this is the trial function requirement. Now, 

what about the requirements of the weighting function. 
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That is W. It should satisfy homogenous part of the essential boundary condition. What 

is homogenous part of the essential boundary condition? So, let us say that you are 

having a boundary value problem with y at 1 of the boundary is equal to 5. So, the 

weighting function should satisfy its corresponding homogenous part. So, the weighting 

function should satisfy the requirement that, it is equal to what? It is equal to 0. 

Homogenous means, this right hand side is zero. So, why it is so; see if y is specified, 

then variation in y is 0, and the weighting function has the similar meaning as that of 

variation in y.  

And therefore, the weighting function is 0 at the points where the functions function 

itself is defined. So, that is why wherever you have the essential boundary condition, that 

means the that function is defined. The corresponding variation which is reflected 

through the weighting function is zero. So, that should be satisfied by the weighting 



function, that requirement should be satisfied by the weighting function. Weighting 

function also should be continuous. You see, when we are designing the trial function 

and the weighting function, we are bothering ourselves so much, about the essential 

boundary condition - not the natural boundary condition. Because the natural boundary 

condition is automatically incorporated through the formalisms of the variational 

method. So, you do not have to forcefully incorporate the natural boundary condition that 

is why it is called as natural boundary condition. So, you do not have to forcefully 

incorporate it. 

Now, this is a brief background. Now with this background let us try to understand, that 

how differently you can choose the trial function, and the weighting function based on 

some particular methods. So, some specific examples. 

Let us say, we are interested to solve a heat transfer problem - one-dimensional steady 

state heat transfer with uniform thermal conductivity, and heat source yes. So, if that is 

the case, we have seen earlier that the governing equation becomes this equal to 0, this is 

the governing differential equation, so that d 2 t dx 2 plus S by K equal to 0. To be able 

to solve this problem numerically, let us assume some value of S by K in consistent 

units. Let us call let let us say this is 100; what should be the unit of this, say this is what 

is the unit of d 2 t dx 2. 

(( )). 

Kelvin per...  

(( )). 

Meter square. So, this is like 100 Kelvin per meter square say. We are not putting the 

unit here, but it is with consistent units. And let us say that the boundary conditions are 

such that at x equal to 0, you have T equal to 0, and at x equal to 10, T equal to 0.  
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So, our problem becomes, a problem of solving a differential equation a very simple 

differential equation of this form - d square y dx by dx is square plus 100 equal to 0. And 

at x equal to 0, y equal to 0 at x equal to 10, y equal to zero. So, this is the problem that 

we intend to solve. 

So, when we intend to solve it, there are various ways in which you can approximately, 

remember we intend to solve it approximately. The objective of this demonstration is not 

to show that how to solve it exactly, because that is very simple in straight forward. So, 

let us let us not bother about that, let us bother about the approximate solution. So, for 

approximate solution, we need what if you have to go through the method of weighted 

residual, you need a trial function and you need a weighting function. So, there are 

different methods, accordingly you can have different trial, and weighting function. So, 

let us take one example: The first example will be the lease square method. 
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So, in the least square method, what we will do? We will try to minimize the error in a 

least square sense. So, what we will be doing - First of all in place of y, we have some y 

approximate, that is there in all methods. So, it there is a trial functions. Now, you 

substitute the trial function in the governing equation. So, you have this plus 100, this is 

equal to the residual R. So, what you are interested in - you are interested to minimize 

you are interested to minimize the value of this square of R. So, how do you do it? You 

find out what is R square? Integrates it over the domain, and try to minimize that. So, 

when you say that, you are interested to minimize R square - you mean integrate to 

minimize the sum of R square.  

So, what you are trying to do, at each and every x there is a corresponding error, R is the 

error. You are finding square of the error at each and every x, and summing it up. If it 

was discrete points, it would have been a sigma or summation, but but because it is a 

continuous function, you have an integration. So, you are having. So, this is... So, 

physically what is the meaning of this; physically you are finding the sum of the squares 

of residuals at each and every point. Why square, because if you just find out the residual 

itself, and find the sum of it, then it can be misleading. Because some of the residuals 

may be positive, some of the residuals may be negative, the total sum may be 0 giving a 

false illusion that as if the error is 0 or error is very small, but actually that may be, 

because of nullification of some positive error, with some negative error.  



Alternatively, one could actually do with the mod of the residual, but because the algebra 

with the mod is tedious, one does not go through the mod, but one basically finds the 

square which anyway is always positive. And therefore is indicative of the magnitude of 

the error, and then try to minimize that. So, these now need to be minimized. Now, when 

it is to be minimized, there must be some unknown parameter through which it needs to 

be minimized. So now, let us come to the choice of the approximating function. It can be 

many, now one of the choices could be that you choose a polynomial. So, if you choose a 

polynomial, remember it is not a must. It is just an example, say we consider it to be a 

second order polynomial with one parameter.  

So, what can be its form? So, what are the requirements that it should satisfy. It should 

be continuous; obviously, we will when we consider polynomial by nature it is 

continuous. So, we do not have to bother about the continuity of it, but most importantly 

it should satisfy the essential boundary conditions. That means, it should be a polynomial 

of such type, that at x equal to 0 - it should be 0, and at x equal to 10 - it should be 0. 

And it is a second order polynomial by our choice. Remember you could also choose 

higher order or lower order polynomials, and general expectation is that higher order 

polynomials will give you less error, because you have considered more number of 

terms. And with one parameter means, there will be one unknown parameter which you 

are interested to find out. 

So, general form of the polynomial can be x into 10 minus x, because this is a second 

order one, you have constructed it by deliberately choosing it product of two first order 

function. So, that it is a second order function. Now, it satisfy the essential boundary 

condition and you consider a parameter a; which is a single parameter, which is a 

multiplying parameter. You want to find out this a, such that this is minimized. So that, 

this is minimized. So, this is your y approximate. So, once you have this y approximate -

next is what your R then. So, let us just open it up. So, 10 a x minus a x square dy 

approximate dx. The second order derivative minus 2 a. So, what will be the value of R? 

So, R becomes minus 2 a plus 100.  
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Now you have to minimize this one R square dx integral of that; that means, you have 

only one parameter here a. So, if this needs to be minimized, then it is derivate with 

respect to a is 0. Because a is the only unknown parameter. So, that means you can write, 

you can take this derivate inside the integral, because the limits are functions of x which 

are not dependent on a. So, you can take this inside the integral, and you can write this as 

2 R. 

So you can see, that although it is a least square method by name it is not a weighted 

residual method by name, but by implication it is a special case of the weighted residual 

method, where the weighting function is nothing but del R del a. So, let us find out the 

weighting function. Weighting function is... 

(( )). 

Minus 2. So, integral of minus 2 a plus 100 to minus 2 dx, the limit of x equal to 0 to 10 

that is equal to 0; that is the outcome of our formulation least square method which we 

have seen may be perceived as a special case of the weighted residual method. So, from 

here what is the value of a. So, minus 2 a plus 100 will be equal to; that is a coefficient, 

because the integrant itself is not 0. So that means a is equal to 50. So, we get one 

method as the least square method. 
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Next, let us take the second example where we consider method called as point 

collocation method. So, point collocation method what we do? We try to have the 

weighting function as a special function. So, we do not go through this route. We have 

the weighting function as the direct delta function, at some chosen points which are 

collocation points. What is the whole idea? The whole idea is that, you try to satisfy the 

value of the function, at some chosen points given by x equal to x i. So, this is the delta 

function. So, when you have this one, then what is the result of the integral? So, you 

have integral R W dx equal to zero. So, what is R? R is... So, it it depends on again that 

what is your trial function. Let us say we keep the trial function same. This is the 

different method, but it does not mean that we have to forcefully choose a different trial 

function, we can keep the same trial function. 

We have understood one thing, how this how this method is different choice of the 

weighting function is different. So, different methods are basically formulated based on 

different philosophies by which the weighting functions are formulated. Of course, you 

can have different trial functions, but that is not a necessity, but as you go from one 

method to the other, these are all special cases of the weighted residual method. You 

have to consider the concept of the weighted weighting function in somewhat different 

way.  



So, when you have this one. So, basically what it becomes R at x equal to x i is equal to 

0. So, if there are many such points, collocation points then it would be a summation of 

that. So, but here we consider only one collocation point. So, point collocation 

collocation method, in this example we consider only one collocation point. Again this is 

an example say x equal to 5. So, collocation point is a point, where you make the 

function satisfy its requirement; that means, at that point the error is exactly equal to 0. 

We are this is the ideal thing. In in in general we are trying to minimize the error, 

minimize the sum of the residual in in some weighted sense. But here, in the collocation 

method you are only focusing your attention on some specific points, and trying to make 

sure that the corresponding errors are zero.  

So, at x equal to 5, you consider you are considering only one collocation point. Here if 

you consider multiple collocation points, it will be sum of the residuals at those 

collocation points. But here you consider only one collocation point. So, R at x equal to 5 

has to be equal to 0. So that means, you have minus 2 a plus 100, here R is such a 

function which is not a function of x. So, does not matter what is the choice of your 

collocation point, but that is because of this very special simple example. Otherwise R 

could itself depend on x. So, minus 2 a plus 100 equal to zero. That means, a equal to 50. 

So, this has given the same solution. The third example example 3, we consider as 

Galerkin’s method. 
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In the Galerkin’s method - so, we are seen in the previous methods - previous two 

methods, we have chosen the weighting function in some special way. Galerkin’s 

method also does it in a very special way, it considers the weighting function same as the 

trial function. So, it considers same form of the two functions. So that, your sort sort of 

degree of freedom is somewhat reduced in terms of choosing the weighting function. 

Once you choose the trial function, you have automatically chosen the weighting 

function. You cannot choose it anything beyond the form of the trial function. So, if you 

want to see that how that can be implemented, let us consider the same y approximate.  

So, the weighting function, remember the weighting function we consider without the 

parameter. So, we take weighting function we consider as x into 10 minus x, we do not 

consider a as a part of the weighting function. Because it is the weighting function equal 

to trial function in the sense of the form. Its if if you just keep the form that is sufficient, 

because a is just a constant multiplier.  

So, if you multiply it with multiply the function with a x into 10 minus x, it is as good as 

multiplying it with x into 10 minus x, because integral of R w dx equal to zero. So, if you 

put a or if you do not put a, it does not matter. Because eventually a is not equal to 0. So, 

just for simplicity we just, but if you are interested to to write it in the full form, you can 

write it a. But we are not writing a a here, because eventually it is the form of the 

weighting function that matters. 

So, let us now do this exercise. So, integral of if you choose the same approximating 

function minus 2 a plus 100 into x into 10 minus x dx equal to 0. So, what should be the 

value of a? a a will be 50, because the remaining part of the integration if you take this 

out of the integral, remaining is just a number. Integral of x into 10 minus x dx from 0 to 

10 will be just a number. So that means, effectively minus 2 a plus 100 will be equal to 

0, that is a equal to 50. 

Now, we have seen 3 examples. And in all these 3 examples we have come through the 

roots of the weighted residual technique, which has some resemblance with the V form 

or the variational formulation. Now, remember that we had different forms of the 

governing equation, we had the original form as the differential form or the D form, we 

could reduce it to a V form, and subsequently we could also reduce it to a M M form or 

the minimization form. So, let us see, that whether we can tackle the same problem by 



utilizing the concept of the M form. Again using some approximating function, but not 

using this form, but using the M form. So, let us see that how we go through the roots of 

the M form. 
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So, before doing that one important thing that we should keep in mind, that no matter 

whether it is the least square method or the point collocation method or the Galerkin’s 

method, that these are not the only methods. These are just some examples that we have 

we have consider, you could have different other methods where you you may choose 

different forms of the trial functions. Like there is a very commonly used method called 

as spectral method. In spectral method, what want does is one uses the truncated form of 

an infinite series as a trial solution. 

So, you could have some special polynomial functions or or special functions which are 

of forms of the infinite series. And in the special functions of the form of the infinite 

series you truncate it up to a finite number of terms, and that you call as a spectral 

method so to say. So, we are not going into all those methods, but these are just to 

illustrate that how you can make a weighted residual formulation given the philosophy of 

a method. 

Now, the M formulation also is similar, we could have several types of methods derived 

from the M formulation, but we will consider only one type of example. But before that 

let us, derive the M form of the equation. So, we have done it similar similar case earlier. 



So, let us do it quickly. So, to derive the M form we first derive the V form. So, we 

integrate it with respect to x by multiplying it with V, and set it to zero. So, then what we 

do, we integrate it by parts. So, V into dy dx minus integral of dv dx into dy dx equal to 

0. So, you have come up with a boundary term V into dy dx. Now, let us try to answer 

some questions. What is the variable on which you are giving the essential boundary 

condition. It is y, because V is variation of y - variation in y. So, that is called as the 

primary variable. Primary variable is the variable on which you are giving the variation 

in the boundary term. So, you have two types of variables. One is primary variable, 

another is secondary variable. Primary variable is this one, I mean if this is delta y, then 

this y is the primary variable, not V. 

And secondary variable is dy dx. Specifying the primary variable at the boundary is 

essential boundary condition, specifying the secondary variable at the boundary is 

natural boundary condition. Here both the boundary conditions are essential boundary 

conditions. So that means, you have V equal to 0 at both x equal to 0, and x equal to 10. 

So, these term is no more important becomes zero. So, once these term becomes 0, you 

are left with integral of dy dx, dv dx dx between 0 to 10 is equal to integral of 100 V dx. 

This is of the form a y V is equal to l V. Where a is a bilinear operator, and l is a linear 

operator. So, this is a, and this is l.  

What are the requirements that these are satisfying, these are continuous functions not 

only that a y V equal to a V y. So, a is symmetric, and a is bilinear, because in place of y 

if you substitute alpha 1 y plus alpha 2 V, and in place of V you substitute beta 1 y plus 

beta 2 V. Then you can see that you can expand it in the form of functions which are 

individually linear in each slot. We have seen that what do you mean by a bilinear 

operator, and here it satisfies that. 

Similarly, this l is a linear operator. So, in place of V you can substitute say alpha y plus 

beta V, and you can see that it is alpha into l of y plus beta into l of V. So, this that is a 

linear operator, but is it sufficient to derive the M form on the basis of symmetry, and 

bilinearity and linearity or you require something else. You require additionally that it 

must be a positive definite operator. That means, a y y must be greater than 0. And that is 

indeed the case, because if you a y y means you replace V with y. So, it becomes dy dx 

whole square dx integral of dy dx whole square dx is greater than 0. Because dy dx 

whole square is positive, and the domain of the integral integration is also 0 to 10. 
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So, you have a y y greater than zero. That means, it is positive definite operator. So that 

means, its M form exists. So, M form is what is the M form? Minimize phi equal to half 

a y y minus l y. We have derived it earlier, in one of our previous lectures. It is very easy 

to derive it straight away from here by substituting V equal to delta y, and it will come 

out to be delta of this phi equal to zero. That means, minimize phi. So that means, 

minimize half integral of dy dx whole square dx minus 100 y dx. Now, if you 

approximate, so use an approximate function, in place of y and minimize phi, then that is 

one way in which you can achieve this minimization through an approximating function. 

So, here also you are having a trial function, but what is the difference with the with the 

others methods like the Galerkin’s method, you do not have any weighting function here.  

You have just a trial function, and you do not require any weighting function. But you 

had to pay a price or rather you had to have a requirement satisfied, because of which 

you can do it. That it is a positive definite operator - if it were not a positive definite 

operator, you could not have been able to come to this form. So, here you have come to a 

form where it is not only a minimization problem, where you require only a trial function 

not a weight function, and also there continuity of the trial function is one order less than 

that of the ordinary differential equation equation originally given. 

(( )) half a y. 

Half a y y yes, this is half a y y. 



(( )) 

So, now you try to minimize this one, and set its derivative with respect to a equal to 

zero. So, you can see that you can do that. So, we are considering y approximation y 

approximate same as a into x into 10 minus x, the same form. So, your objective is to 

minimize this based on the choice of this approximating function. Your approximating 

function, it could be up to continuous up to first order derivative for this case. Here of 

course, it is continuous up to second order derivative, that was very much essential for up 

for the weighted residual methods that we have used. Why, because there we could not 

utilize or rather there you did not utilize the integration by parts, and the related 

reduction in the order of the continuity requirement.  

Here you have already utilized integration by parts. So, the continuity requirement is one 

order less. Similar thing, you can do for a fourth order equation, then you can come up 

with up to second order derivative. So, you can reduce, you can use functions 

approximating functions with reduce requirement of continuity. And no weighting 

function is necessary. So, that is one of the advantages of this method - and this method 

is known as Rayleigh-Ritz method. 

So, let us do this exercise integral of. So, what in place of dy dx, we will be 

approximating approximating it with dy approximate dx. 

So, then phi will be half of dy approximating dx whole square minus 100 y dx minus, 

here also y is y approximate. In place of y approximate a x into 10 minus x dx. So, let us 

complete this one. 

So, the remaining part is simple algebra, if you help me then we can do it a bit quickly. 
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There will be one a square, then 10 minus 2 x whole square dx 0 to 10 minus 100 a. So, 

you have del phi del a equal to 0. That means which implies a is equal to. So, you can 

complete this exercise, this is a very simple exercise. And at the end, if you do the 

integrations there is no surprise, here also you should get a equal to 50. Question is why 

we have got a equal to 50 for all cases. So, it is very easy to come to that conclusion for 

that you just, complete the analytical solution of this equation. So, you integrate it once 

dy dx is equal to minus 100 x plus c 1, and y is equal to minus 100 x square by 2 plus c 1 

x plus c 2.  

So, apply the boundary conditions at x equal to 0, y equal to 0. That means, c 2 equal to 

0. Second boundary condition at x equal to 10, y equal to 0. So, you can cancel one 10 

here. So, c 1 is 500. So, y becomes minus 50 sorry 50, if you take 50 as common, then 10 

x minus x square. So, 50 x into 10 minus x. 

You can see that this is a special case where the approximate solutions, and the exact 

solution are the same. This is the exact solution. The reason is that at the exact solution is 

itself a second order polynomial form. And you have chosen the trial function also to be 

a second order polynomial form. So, we have used four methods actually. And in all the 

four examples, we have use the same trial function which is a second order polynomial 

function. Our objective was that what is the unknown coefficient in that trial function, so 

that the error is minimized in some way. In three of the cases, we have gone through the 



root of the weighted residual method, in another case we have gone through the root of 

the Rayleigh-Ritz method. But whatever was the method the objective was to minimize 

the error, based on a particular choice of the trial function and that choice of the trial 

function happens to be the exact form.  

Therefore, what you can see here is that this coefficient 50 is coming out to be same, no 

matter whether you are using the actual actual exact solution or the approximate solution. 

In reality that will not happen for a problem, because you do not know what is your exact 

solution. So, your exact solution form will always be different in reality than your 

approximating function form. Only in a accidental case or where you know the solution, 

and you are just going for a check in such cases it may be same, but in general not. 

So, what we have learnt out of these. We have learnt that how to use the M form or the V 

form to get a corresponding approximate solution of the differential equation. But one 

important thing is that these approximate solutions are global in nature, that means if you 

have the domain like this, you have an approximating function which you intend to make 

to to be made valid over this entire domain. So, you have this y approximate as a x into 

10 minus x, that is a global form of the function that you approximate for as a solution 

over the entire domain. However, what you could do to improve upon your solution, you 

could use a higher order polynomial. Here it is not necessary, but there are some 

problems or in fact, for most of the problems your accuracy of the solution will go up, if 

you use a higher order polynomial.  

But higher order polynomial will mean more calculations, and more tedious calculations. 

So, how you can reduce those calculations in a way, in a more effective way, you 

consider the domain to be locally divided into number number of sub domains. And you 

consider lower order polynomials for approximating solutions over each of these sub 

domains. So, what you are doing is, you are now not considering a global solutions, but a 

local solution. Because you are considering a local solution, the your entire global 

solution it may be whatever very complicated, but when you consider a small part of the 

domain, then this may be fitted by lower order functions. Whereas, if you wanted to do it 

in one shot over the entire domain, you would have required a much higher order 

polynomial function. 



So, you are reducing the requirement of the order of your polynomial function, but the 

cost that you have to pay now is that, now you are sort of dividing your domain into a 

discrete number of sub domains. And for each sub domain you are going for a lower 

order polynomial to approximate your solution. That is the advantage, but the limitation 

now is that, you are no more having a continuous variation, but you are having only 

discrete points, and your solution is fitted within this discrete points. So, this is the basic 

concept of discretization. So, let us sum it up, that what is discretization? 
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Divide the domain into numbers of discrete sub domains. The names of the sub domains 

may be element, control volume depending on the particular method, that you are 

choosing. So, once you divide the domain into a number of sub domains, then each sub 

domain is represented by a discrete set of points. So, the continuous variation of the 

function is lost, these discrete sets of points these are called as grid points or nodes, 

depending on again the method that you have chosen. And then your objective is to 

convert the governing differential equation into a system of algebraic equations valid, at 

each of these discrete points. That is the task of the method itself. 

 So, we can see that you can have different methods in principle. You can have for 

example, we will see finite difference methods, finite element method, finite volume 

method that we will see in our subsequent lectures. But first and foremost it is important 

to appreciate the general philosophy of these methods. Say what you are doing? You are 



losing the continuous nature of the solution, and considering the solution to be obtained 

for a discrete set of sub domains or points. And for each of these points, you are writing, 

you are tending to write a system of algebraic equations. Your objective is to convert the 

ordinary differential equation or partial differential equation, whatever into a system of 

algebraic equations. And there you apply the particular method that you are intending it, 

it could be finite element, finite difference or finite volume. How we can do that that is 

where the heart, and soul of the computational fluid dynamics lies. And that we will take 

up in our subsequent lectures, thank you. 

 


