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We continue with our discussions that we started with in our previous lecture. That, we 

are now going for a variational formulation for solution of the differential equations.  
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To do that, we have taken up a prototype example, where the example is a one-

dimensional steady state heat conduction problem. So, in the one-dimensional steady 

state heat conduction problem, we have come up with this particular simplified form 

with the constant source term. Then, we have multiplied the equation with a variational 

parameter v and integrated it over the domain. And then, we have considered a special 

type of boundary condition that, the temperature is specified at both the boundaries, let 

us say at x equal to 0 and x equal to l, and based on that we have come up with this 

particular form. So, this particular form is also known as the V form - variational form or 

weak form. The D form is often called as a strong form. If there is something which is 



weak, there must be something else which is strong. So, the V form is the weak form and 

D form is the strong form. So, where from the strength of the weakness comes.  

 

If you look into the differential form or the D form, it requires the continuity up to 

second order derivative of the variable T, whereas in the V form, it requires the 

continuity up to the first order derivative. So, the weak form or the V form has weakened 

the requirement of continuity of the highest order derivative, and that is why the weak 

form. So, it is as if the formulation has weakened the requirement of highest order 

continuity of the highest order derivative. Hence the name weak found. 
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Now, this weak form has certain interesting property. So, let us make some observations 

out of the properties of the V form. So, the V form we generically write in this way 

a(T,v) is equal to l(v) where a is a bilinear operator, we will see what is the bilinear 

operator in this case. So, it is a operator involving two functions and l is a linear operator 

which involves only valve function. Why linear, why bilinear or what are the 

implications of this, let us make certain observations. Let us find out… 

This a is a function of two parameters that is what we first understand. Now, each of 

these parameters we make some change. We replace T with alpha 1 T plus alpha 2 v and 

v with beta 1 T plus beta 2 v. Let us see that what we get out of that through this 



example. So, in here we replace k d dx in place of T alpha 1 T plus alpha 2v in place of 

dv dx.  

So, this you can write alpha 1 beta 1 integral k dT dx dv dx plus sorry dT dx dT dx. So, 

this term with this term, remember alpha 1, alpha 2, beta 1, beta 2 all these are constants; 

plus alpha 1 beta 2 integral of k dT dx dv dx dx plus alpha 2 beta 1 integral of k dv dx dT 

dx dx plus alpha 2 beta 2 integral of k dv dx dv dx dx. Now, you can write this as alpha 1 

beta 1 a(T,T) plus alpha 1 beta 2 a(T,v) plus alpha 2 beta 1 a(v,T) plus alpha 2 beta 2 

a(v,v). So, you can see that it is at operator where it is linearly operating on each slot. So, 

it is like alpha 1 beta 1 into the first two that is a(T,T) then plus alpha 1 beta 2 into a(T,v) 

plus alpha 2 beta 1 into a(v,T) plus alpha 2 beta 2 a(v,v). So, it is as if an operator where 

it is linearly operating on each of the slots. And that is why it is called as a bilinear 

operator. So, it is a bilinear operator which means it is linear in each slot. So, 

symbolically a bilinear operator may be written in this way. There are two arguments and 

if it is linear in each argument that is linear in each slot we call it a bilinear operator. So, 

this is the first observation. Let us make the second observation. 

What is the difference between a(T,v) and a(v,T)? 

a a(T,v) means in you in place of T it is T, in place of v it is v; a(v,T) means in place of T 

it is v and v it is T, here of course they are the same. So that that is what we call as 

symmetric that we will come next. But there are many operators which need not be 

symmetry. So, the second observation, l alpha T plus beta v...  

This is nothing but alpha l(T) plus beta l(v). So, if such a property is satisfied then the 

operator l is called as a linear operator. So, l is a linear operator. 

Third you can easily observe that a(T,v) is equal to a(v,T) from this example. If you 

swap T and v it makes no difference. So that means a is a symmetric operator - a is 

symmetric or sometimes it is called as self adjoint. The fourth observation is let us find 

out what is a(v,v). That is integral of k dv dx whole square dx; k is a property which is 

positive - thermal conductivity of the material is positive, and dv dx whole square no 

matter whatever is dv dx it is positive. So, its integral over the domain is positive. So, 

this is greater than 0, this is called as this implies that a is a positive definite operator or 

in another technical term it is called a is a scalar product on V a is a scalar product on V. 

V is the space in which you have this variations small v. So, these are some interesting 



properties and we will make use of these interesting properties. So, we have still now 

seen two forms; one is the D form or the differential equation form or the strong form, 

the V form or the variational form or the weak form. 

Now, we will subsequently see a third form which we call as M form or a minimization 

form. And we will see that how we can come up with that form starting from either the 

M form or starting from the V form or even the D form. So, to do that we will utilize 

some of these properties and let us has an example, consider a function with which we 

will starts utilizing this properties that we have just now derived.  

(Refer Slide Time: 12:39) 

 

 

So, let us say that we have a function g of epsilon which is given as follows. And we 

defined a minimization problem, say that the M problem or the minimization problem is 

equivalent to minimize g at epsilon equal to 0; that is minimize half a(T,T) minus l(T). 

Let us see whether we can arrive at this M problem from the V problem or if we assume 

that the M problem is true then can we arrive at the V problem starting from the M 

problem. So, what are the assumptions that we will make? The first assumption that we 

make is that a is a bilinear operator. We have seen by this time through an example that 

what is a bilinear operator? So, g epsilon is half a(T,T) plus epsilon by 2 a(T,v) plus 

epsilon by 2 a(v,T) plus epsilon square by 2 a(v,v) minus l(T) minus epsilon l(v). So, we 

have assumed a is bilinear and l is linear.  



To minimize g we must have g dash epsilon is equal to 0, and since we are minimising at 

epsilon equal to 0 we must substitute g dash epsilon at epsilon equal to 0, equal to 0. 

Remember epsilon equal to 0 is not first substituted; obviously, you first find out g dash 

epsilon and then substitute epsilon equal to 0, but because at epsilon equal to 0 your 

minimization condition is satisfied. 

Now, g dash epsilon, what is g dash epsilon? Half a(T,v) plus half a(v,T) plus epsilon 

a(v,v) minus l(v). So, g dash epsilon at epsilon equal to 0 will have this term go away. At 

epsilon equal to 0, you can substitute now epsilon equal to 0. You can see that from this 

we are disparate to get back the V form. How can we get the V form? If a T comma v 

was same a v comma T then this would have been... So, for minimisation of these this is 

equal to 0. So that would have given us a(T,v) equal to l(v), provided a(T,v) equal to 

a(v,T). That means a is a symmetric operator. So, a is symmetric implies a(T,v) equal to 

a(v,T) which implies a(T,v) equal to l(v) which is the V form.  

So, what is our conclusion? Conclusion is M form will imply V form provided, what are 

the things which are provided? a is bilinear, l is linear and a is symmetric. These are the 

conditions which are mentioned. So, that means starting from the M form you could 

arrive at the V form. Question is - could you do it the other way? That is starting from V 

from could you arrive at the M form. So, let us let us try to do that; let us try to see 

whether that is possible.  

So, to do that we will start with this g epsilon. 
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So, now we have utilised what conditions that a is bilinear, l is linear and a is symmetric. 

So, we considered a as symmetric that means you can write g epsilon is equal to half 

a(T,T) minus l(T) plus epsilon a(T,v) minus l(v) plus epsilon square by 2 a(v,v). Now, if 

we assume that the V form is true then this is equal to 0 - if V form is true. So, if V form 

is true this term is 0, then we can say that g epsilon is always greater than or equal to this 

term in the box provided a v comma v is positive. When that is true P? When a is a 

positive definite operator. So, we have just now seen that what is the meaning of that 

one. So, if a is positive definite, then only this is true. So, g epsilon is greater than equal 

to this one provided a is positive definite. That means this term in the box is the 

minimum of g right. So, this implies that under this condition you have half a(T,T) minus 

l(T) is minimum of g epsilon at epsilon equal to 0, which is nothing but the M form.  

So, you can see that we can do it in the other way; we can start with the V form and 

come to the M form, but it requires an additional constrain that it requires a to be positive 

definite. You could start with the M form and come to the V form without requiring a to 

be positive definite. So, this additional constraint is necessary to convert the V form into 

that equivalent M form. So, with this understanding, let us see that how these forms are 

interchangeable? Let us let us take this example, whatever example that we were 

considering that in this example let us see how we can swap different forms.  
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So, you have k dT dx dv dx dx is equal to integral of S v dx. Here in place of v if you 

substitute delta T. So, you can write. So, this is like the function which we we can give a 

name. This is like, we just give it a name capital pi, this is the capital pi which you are 

minimizing. So, del of that is 0. So, this is like half K(d,T) minus ST. So, we can see that 

we can swap one form from one form to the other form, and in this example this 

interchangeable is possible in both interchangeablity is possible in both directions, 

because it is symmetric as well as positive definite - a is both symmetric and positive 

definite. 

Now, let us pay some attention on the D form or the differential form. So, could you 

could you get back the differential form from here, how could you get back the 

differential form from here? So, we have seen that from V form you are getting the M 

form. How could you get back the D form? So, if you see that the the V form is given to 

you, so remember you could you derive that V form from the D form itself by integrating 

by parts. So, here you have to revert it back. So, what you can do? You can again 

integrate it by parts, now you want to reduce the order of the derivate of the v term. 
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So, let us take this as an example. So, which one will you take as first function and which 

one you take as a second function. So, this is the first function and this is the second 

function. So, with that if you integrate, then, first function into integral of the second 

minus integral of the derivative of first into integral of the second...  

With the boundary conditions that we have considered that v is 0 at both the boundaries 

that is T is specified then this term will become 0. So, you will be left with integral of d 

dx of k dT dx plus S v dx equal to 0. Since v is arbitrary that means that you have this 

equal to 0, which is your D form. So, the from the V form you could get back the D form 

or you could get the M form also, provided all the underlying conditions are fulfilled. 

Now, let us pay some attention to the boundary conditions. We have actually taken a 

very simplified form of the boundary condition. What simplified form we have taken? 

We have taken that T is specified, but T need not be specified, the dT dx itself could be 

specified. So, in general, in a variational formulation you could treat these two different 

cases in a different way; so, one of the possibilities, so boundary conditions in the 

variational formalism. 

You could have T specified, T specified means what? The variable the variation of which 

appears in the boundary term is specified. The variation of T appears in the boundary 



term when that variable is specified for which the variation appears in the boundary term. 

So, T is specified more formalities the variable for which variation appears in the 

boundary term, because v is variation of T. And k dT dx specified, it means it is the 

coefficient of variation term, coefficient of variation in the boundary term.  

So, if you look at the boundary term carefully, v is the variation so its coefficient is k dT 

dx. So, specifying k dT dx is actually specifying the coefficient of variation in the 

boundary term. So, these are the two types of variables; the first type of variable this is 

called as the primary variable and the second type of variable is called as a secondary 

variable. Specifying the primary variable at the boundary is called as essential boundary 

condition. So, specifying primary variable at boundary, it is called as essential boundary 

condition and specifying secondary variable at boundary is called as natural boundary 

condition. Essential boundary conditions these are English words which are literary 

relevant in this context. So, essential boundary condition means this is it is it has to be 

essentially satisfied. So, T is specified that means the variation in T has to be 0. So, that 

is essential.  

The other one is natural, because for that you do not have to give any extra effort that 

term automatically appears in your boundary term through the formulation procedure, 

like k dT dx, you can recall from the physical understanding that k dT dx is minus of the 

heat flux. So, specifying the heat flux it essentially means that you you are not having to 

specify it by any (( )). You are not having to specify it by any separate mechanism. The 

term k dT dx automatically appears in the boundary expression. So that you can 

substitute it there so substitute it there. So, that is called as a natural boundary condition. 

So, we have got an understanding of what could be the different types of variables and 

the corresponding boundary conditions in a variational formalism. Now, can we extend 

these concepts to equations which involve high order derivatives? Let us let us take an 

example. 
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Let us say we have this differential equation. This is the fourth order differential equation 

that we can see, and this is many times a prototype of a very important problem in 

structural mechanics that is deflection of beams. So, if you want to find out the 

displacement, you can get similar prototype differential equations. Our objective is not to 

go in to such a physical problem, but see that how we can cast this equation in a similar 

formulation. So, what we are going to do here, we will see that how we can get a 

variational formulation out of it. What could be the types of boundary conditions? Let us 

be open and see that what could be the possible boundary conditions. So, what is the first 

step to get the V form from the D form? We have to multiply the equation with V and 

integrate over the domain. So, this is the key step to get the V form. So, we will integrate 

it by multiplying with v over the domain.  

Next what we will do? We will integrate it by parts. So, let us just do it quickly, because 

we know that how how this needs to be done. So, v is the first function and the function 

appearing here is the second function. So, first function into integral of the second. Let 

us say that x equal to 0 and x equal to L at the bounce of x minus integral of derivative of 

first into integral of the second.  

What will that what is the next step? See we will stop to the limit where will see that the 

orders of the derivatives in the variational term and the original term are the same. Then 

it will automatically become a symmetric term, the operator will be become a symmetric 



operator. So, we will integrate it once more by parts with dv dx as the first function and 

remaining as the second function. So, let us do that. Now, let us try to examine the 

boundary conditions and the nature of these operators. So, let us try to examine... 

This will be positive right. Now, let us examine the boundary terms. In this boundary 

term referring to this boundary term, you tell me what is the primary variable? What is 

the secondary variable? Primary variable - primary variable is the variable on which the 

variation is taken in the boundary term y y, because v is variation in y. What is the 

secondary variable? The coefficient of the variation term, so whatever else remains other 

than v; so, d dx of this one. There is also another boundary term - this one. So, here what 

is the primary variable? dy dx, because the variation is taken, v is what? Delta y, so it is 

delta of dy dx, because v is delta y and d and delta are exchangeable. So, it is delta of dy 

dx. So, primary variable is dy dx. So, it is delta of what that what is the primary variable; 

secondary variable a d 2 y dx 2. So, what have could be the possible boundary condition 

that you could specify what could be your possible essential boundary conditions. So, 

either y specified or dy dx specified, so this could be essential boundary condition, this 

could be essential boundary condition.  

So, you can get one important understanding that specifying the derivative is not 

necessarily natural boundary condition. That was a second order derivative problem. 

This is a fourth order differential equation problem. And specifying this is a natural 

boundary condition. So, these are specifications of these are natural boundary conditions. 

So, in the boundary either you have to specify the essential boundary condition or you 

have to specify the natural boundary condition.  

Now, once these are specified, the remaining terms you have a y comma v as this one 

and l of v as this term. Obviously, when you substitute the boundary conditions here, the 

boundary conditions are not such that they are always 0. So, there will be term some 

term that will remain after substituting the boundary condition. For example, let us say 

that at x is equal to L you have, d dx of a d 2 y dx 2 is equal to some value L in some 

units. So, it will become v at x equal to L. So, that is not 0, because you cannot 

simultaneously specify v and this one. So, v in the boundary will remain. So, where will 

that go? That you can club up with this L term. So, the L term may contain this plus 

some boundary terms depending on what what are the non-zero terms in the boundary. 

So that that should be clear.  



So, it is not that these terms are together giving rise to 0. Some non-zero terms may they 

are depending on what are the boundary conditions specified. And those specified values 

of the boundary conditions, let us let us let us take an example; let us say that let y is 

equal to 0 at x equal to 0, d dx of a d 2 y dx 2 is equal to c at x equal to L, dy dx equal to 

0 at x equal to 0 and a d 2 y dx 2 let us call it c 1 and let us call it c 2 at x equal to l. Then 

let us write the corresponding terms. So, in the boundary term you have at x equal to 0 

this term will be 0. Even if y was non-zero, but some specified that means v is zero. 
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So, here it will be minus sorry this is equal to v at L into c 1 this minus zero. So, that is 

the boundary term that we get from here. Then minus at x equal to l it is c 2. So, c 2 into 

dv dx at l, then the remaining term will be 0, because dy dx is specified, so dv dx is 0. 

Plus a d 2 y dx 2 d 2 v dx 2 dx.  

So, this you can write in a form a(y,v) equal to l(v) where a(y,v) may be let us use a 

different symbol say capital A because we have already used one small a in the problem, 

where what is capital A(y,v)? It is integral of a d 2 y dx 2 d 2 v dx 2 dx x equal to 0 x 

equal to l. What is l(v)? Whatever you take it on other side. So, minus integral of b v dx 

minus v L c 1 plus dv dx L c 2; this is a linear operator on v. So, the objective of going 

through this example was to illustrate that even some terms from the boundary they do 

remain; they also can be clubbed and put in the general form. So, here also you can see 

that capital A is symmetric and it is positive definite; capital A is a bilinear operator and l 



is a linear operator. So, with these considerations you can also convert this problem into 

a corresponding M form, and that I leave on you as an exercise, it is very simple, one 

more step can lead it to M form.  

Now, we have seen that how to make a variational formulation of a differential problem 

differential equation problem, and not only that how can how can that problem may be 

converted into an equivalent minimization problem. The question is that, once we have 

formulated these types of problems we were intending for some solution, but never we 

hinted that how should we get the solution. We we were abstracting our self from the 

solution, we were not putting so much of attention on how to get the approximate 

solution, but the formulations which can perhaps lead us to the approximate solution. 

Now, if these formulations or the concepts of these formulations are to be implemented 

in practice, then there are certain mechanisms by which we can do it. So, those 

mechanisms we learn one by one.  
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So, the objective of the next part of our study will be to learn the art of approximate 

solution of differential equations through the principles that we have just learnt. So, 

when we say approximate solutions of differential equations, the situation is that we can 

have various techniques really a lots, a lots of techniques for using which we can get 

approximate solutions. We will try to cover as many techniques pertinent to CFD as 

possible in this particular course, but we will start with those techniques which directly 



follow from our previous discussion. Because that gives us a general collection of 

methods, so to say with a name weighted residual approach. This approach gets a clue 

from the variational formulation. What is the clue? In the variational formulation, we are 

multiplying that differential equation with a weighting parameter which is nothing but 

the variational in the in the variable itself. So, v we are multiplying the differential 

equation with v and integrating over the domain and setting it to 0. Only thing is that this 

v is an arbitrarily small variation. Taking clue from that the weighted residual approach, 

it was defined it was introduced in this way.  

So, here in the differential equation form you have an operator which is may be a first 

order derivative operator, second order derivative operator, whatever, a differential 

operator. Now, the differential operator contains a dependent variable like say y, which 

you want to solve as a function of x. So, let us take an example; let us say that you want 

to solve d 2 y dx 2 equal to 0, one of the simplest possible equations. So, we call it a 

different linear differential equation where L(y) equal to 0, where L is the linear operator 

d 2 dx 2 just a notation. Now, we could get a variational formulation of this one very 

easily by multiplying this with v and integrating it over the domain; that is very simple. 

Question will remain that - what is that v in a non-abstract sense? In an abstract sense, of 

course we know that it is the variation in y, true, but if you want to implement it in 

practice, if you want to use a function in place in place of, this after all in the function 

place it is the function; if you want to implement a function in in place of this one what 

could you do?  

So, the relaxation to the abstract understanding is that what we could do perhaps is to use 

some special function in place of this v, which could achieve the same purpose as that of 

this original introduction original meaning of v in the introduction. Then the question 

remains that - what will be this y? You want to solve for this y; this y you do not know. 

So, you did some approximation to this y which you want to substitute in this integral. 

Otherwise this will remain a differential equation. We want to convert it into some non 

differential form, may be an algebraic form. So, if you want to convert it to an algebraic 

form and why do you want to convert it to an algebraic form, because we know that how 

to easily solve algebraic equations. And in fact, one can use numerical tools for solving 

algebraic equations. So, to get an algebraic form what we will do is we can substitute y 

as an approximate polynomial. So, if you substitute y as an approximate polynomial then 



d 2 y dx 2 will be at will be another polynomial which is the approximate polynomial 

differentiated twice with respect to x. So, that approximate polynomial will be 

approximate, and because it is approximate d 2 y approximate d y 2 or L(y) approximate 

will not be equal to 0 right. Because the exact function if it was there, now if you are 

very lucky or if you have such a great inside that you know what is the final solution and 

you substitute that as an approximate solution it will be 0 directly. So, that can be valid 

for only simple cases, but not in complex cases, which you really want to solve 

numerically.  

So, in general if you substitute y approximate in the differential equation it will not be 0. 

So, when it will not be 0 you have L(y) minus L(y) approximate that is R - residual R 

which is non-zero. So, this residual is your error. L(y) and L(y) approximate if these two 

are both equal to 0 then the residual would have been 0, because L(y) itself is 0, your 

L(y) approximate is the residual. Your objective is to minimize the residual in an integral 

sense over the domain. So, for that what you do is you multiplied with a weight function 

and make the weight function in such a way that in an integral sense over the entire 

domain, the error incurred because of substitution of an approximate y in place of the 

actual y is minimised. So, that approach in a mathematical formalism is called as 

weighted residual approach.  
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So, what it is basically trying to do? You are writing the residual, you are multiplying the 

residual with a weighting function w which is a non abstract function which is not like 

the variation in y, but it is some function, we will later on see in the next class that how 

to choose these functions and integrated over the domain. So, let us call it d omega 

where d omega is the elemental part of the domain and set it to 0. So, by this what we try 

to do? Try to minimize the error or the residual in an weighted integral sense. So, what 

you are basically doing? You are multiplying it with a weighting function.  
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So, you have got now two types of functions; one is the y star or y approximate, this we 

call as trial function. Why it is a trail function, because you do not know what is y. This 

is a just as a trial you have substituted. And this trial function may have unknown 

coefficients which you want to evaluate by imposing this constraint. So, you have 

another function w which is you call as weight function or weighting function. So, you 

choose some trial function, you choose some weighting function with an effort that your 

total error in an integral sense over the entire domain is 0. So, this is the physical 

meaning of this mathematical equation that you try to you make an attempt to minimize 

the total error incurred over the entire domain, because of substitution of an approximate 

function instead of the actual function you have incurred an error, and you are attempting 

to minimize the total error in an integral sense over the domain, and that you do by 

setting this integral equal to 0.  



So, that is as if your effort is to make a zero error in an integral sense. And for that you 

required these two functions, one is the trial function another is the weighting function. 

And this concept of this entire formulation is borrowed from the previous variational 

formulation, because it is as good as writing the original differential equation with just 

approximate function substituted in place of the actual function that is one 

approximation, and the weighting function not the variation, but some arbitrary 

weighting function. So, these are the two relaxations that we have made. We have not 

substituted the actual function, we have substituted the approximate function instead, and 

we have not substituted variation in the variable, but we have substituted at arbitrary 

weighting function instead.  

But otherwise this formulation has a great similarity with the variational formulation, one 

advantage of this is that here you do not required the functions to be satisfying the 

special conditions like symmetric, positive definite all those things. Because we will not 

in general be simplifying this by using integration by parts. So, these functions will 

require some other special requirements that we will see in the next class. But we can see 

that these functions are not as rigorous as that of the original functions, original solutions 

and the variation, and therefore, it will lead us to the approximate solutions of the 

differential equations. How it can lead us to that? That we will see in the next class. 

Thank you. 


