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Today, we will start discussing on turbulence modeling. Now, turbulence is a very 

fascinating topic, at the same time it is not very easy topic  to discuss about. So, the 

motivation of studying turbulence modeling in this course is to bring entire thing in 

prospective of CFD what we have learnt rather than going into details of studying 

turbulence, because turbulence itself is an involve topic for on which separated courses 

can be deal, so our objective will not be going into too much of details, but first to 

appreciate what are the important physical features of turbulence flows that lead to some 

of requirements of turbulence model.  

(Refer Slide Time: 01:19) 

 

So, to first appreciate that like what are the basic feature of turbulence follows we can 

very quickly re visit the Reynolds famous Reynolds experiment in which there is a tube, 

and there is supply of fluid through the tube, and a color dye is injected with a fluid 

screen; at a very low velocity, what happens? The color dye forms layers one over the 



other, because of orderly motions of the fluidly element. So, you have for low fluid 

velocities regular orderly motion of fluid elements. This is what we usually call as 

laminar flow  this are not formal definitions this are just qualitative understandings of 

what we are talking about. 

Now, suddenly as you increase the velocity of flow what is seen is that, these dye liens 

no more remain like in a layered manner, and they come out get diffused and mix in the 

flow, so we then say that there is the random disordered motion in the fluid, which we 

qualitatively call as turbulence flow. Remember this is not a definition of a turbulence 

flow neither we are attempting to give a definition turbulence flow, because it is not 

possible to define a turbulence flow within a particular guideline only we can say that 

turbulence has certain important characteristics.  

So, what we can see what some of characteristic we can learn from this very simple 

experiment that act very low velocities whatever is the perturbation in the flow, what 

how can a perturbation be there can be slight fluctuation  in the  inlet velocity, there can 

be perturbation due to the effect of the wall, so there can be perturbation or disturbances 

flow, but the disturbances do not get amplified the disturbances dye down, on the other 

hand if the velocity is large then because of the dominance of the inertial effect as 

compare to the viscose effect, viscose effect here there try to do they try to dampen out 

the amplification of perturbation, on the other hand the inetial effect try to amplified the 

perturbation.  

So, if you have higher velocities you will have amplification of perturbation and that will 

ensure that there is a strong mixing a fluid elements that will come to that issue later on, 

but that will ensure that first there is no regular order motion of the fluid element, so that 

motion becomes random and disordered, because the perturbation trying to grow, so in 

that turbulent flow whatever, may be the perturbation in the flow that even very small 

perturbation till to grow, where as in the laminar flow those perturbations tends to lie 

down. 

Now, we all know that we characterize this transaction behavior from laminar flow to 

turbulent flow with aid of the Reynolds number, which qualitatively may represent the 

ratio of inertia to discuss forces. Now, we will not go much into details of that, but with 

this qualitative understanding, we will try to identify some of the important features of 



the turbulence flow. Randomness of the transport of the transport variables with respect 

to time and also space, so we can say that this some average, on an average the quantities 

are fluctuating with respect to space and time, the quantity may be velocity with time 

whatever this are fluctuating with position and time. So, when they are fluctuating it is 

possible that because of fluctuating of velocity there is a significant amount of 

momentum transport between various flow fluid elements, because they are fluctuating 

in the velocities their interacting with their fluctuating components velocities and in that 

process there are having an exchange of momentum and therefore, it ensures that there is 

strong mixing in a flow.  

So, turbulent flow we can say that has an enhanced effective diffusivity because 

diffusivity is a signature of mixing, so strong mixing in turbulent flow is there because of 

this fluctuation interaction of the fluctuation components of velocities, or may be other 

transport parameters like temperature, in terms of modeling there is another very 

important issue which is wide range of length scale and time scales that makes modeling 

and turbulence very complicated. To understand what are the ranges of this length scales 

for example, and how do they pose they challenge in terms of representing the turbulent 

flow through statically equation, we will see later on that why statically treatment is 

necessary, but even before that just to appreciate the different length scale and time 

scales, let us try to identify some of the basic entities in the turbulent flow.  
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So, the basic entities in the turbulent flow are lams of rotating fluid masses called as 

Eddies, so these are, so these are essentially sum lams of fluids which are rotating. So, 

now there are Eddies of different sizes in a turbulent flow, so if you consider a channel 

like this you can have a large Eddy, a large the largest Eddy which is of the system 

length scale and you can have small Eddies which are of molecular length scale. So, 

what happens the large Eddy extract the energy from the mean flow because of the 

instabilities in the mean flow, so the mean flow has certain instabilities which is terracing 

the turbulence, because of the instabilities what happens is that the large Eddy can 

extract energy from the mean flow, once the large Eddy extract from the mean flow what 

it will do it will involve into smaller and smaller eddies to which the energies 

subsequently past and then.  

So, energy will pass from the large Eddy to smaller Eddy in this way again to further 

smaller Eddy in this way to the smallest Eddy, so the large Eddy it extracts kinetic 

energy from mean flow, and that entire energy caskets through smaller and smaller 

Eddies till it is moped up by the smallest Eddy due to viscous dissipation. So, energy 

moped up due to viscous dissipation. The question is that why in the large Eddy energy 

cannot be moped up due to viscous dissipation and why do you have have to go to the 

smallest Eddy scale?  

So, for that we have to understand what are the differentness in scale of large Eddy and 

small Eddy, so let us try to consider that you have large Eddy, when you say large we 

say largest Eddy and a smallest Eddy. Let us say the corresponding links scale, we just 

give length scale as a largest Eddy length scale as l and smallest Eddy scale as eta, large 

Eddy velocity scale as u and small Eddy velocity scale as v, if we known length scale 

and velocity scale using these two we can formulate what is the time scale. So, now what 

is the length scale, it is of the order of the system length scale, so if the Reynolds 

numbers is large what it means? It means that with respect to the system length scale the 

inertia forces dominant over the viscous force; that means, for the over the large Eddy 

length scale the inertia forces much, much more dominant over the viscous force that is 

why, whatever energy that the large Eddy extract from the mean flow that cannot be 

dissipated by the large eddy.  

Eddy in the form of viscous dissipation because viscous effects are negligible as 

compared to inertial effects for large Eddies, but as come down to smaller and smaller 



Eddy is the length, the size of the Eddy the length scale of eddy is small so that means, 

the inertial force with scales, with the length scale the inertial force will become smaller 

and smaller and as you go to the smallest Eddy, the smallest will be just good enough to 

dissipate all the energy that has been cascaded from the larger Eddy scale to the smaller 

eddy scale. 

So, what we can say regarding the small Eddies, the smallest Eddy is will be just good 

enough to dissipate all the energy to viscous dissipation that means, the smallest Eddy 

will be characterized by a corresponding Reynolds number based on that length scale of 

the order of one, that is inertia force will just be balanced by viscous force, so that the 

Reynolds number will be the order of one. Now to understand this behavior, so this is 

known as energy cascading that is how the energy is cascaded down from the largest to 

the smallest Eddies.  
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So, to understand that how different lane scales are involve with this energy cascading 

mechanism, let us first write what is the rate of extraction of turbulent kinetic energy 

from mean flow. So, let us call this as pi, so this is of the order of what half mu square 

this is per unit mass we write, so that divided by m this is that kinetic energy, so that 

divided by the time scale per unit time the rate. Now what is this time scale in terms of 

the velocity and the length scale, so this typically is called as the turn over time scale, 

that is a time scale characteristic to the large eddy turn over, so the large eddy  because it 



will it evolves it is a dynamical structure it evolves into smaller and smaller Eddies and 

then again you have large Eddies appearing and so on. 

So, it is a dynamically evolving situation, so the time scale is l by u so the this one the 

rate of extraction of turbulent kinetic energy is of the order of u cube by l ,what is the 

rate of dissipation of turbulent kinetic energy, that we call as epsilon; it is of the order of 

mu eij into eij, where eij is the rate of deformation tenser associated with the smallest 

Eddy, because the smallest Eddy is dissipating the entire kinetic energy, turbulent kinetic 

energy that has been extracted by the larger Eddies to viscous dissipation. So, this rate of 

deformation is given by the velocity gradient in terms of scale.  

So, what is the velocity mu is the kinematic viscosity, so what is the rate of deformation 

in the scale of the smallest Eddy? v by eta, so mu v square by eta square, so we have an 

expression for pi of the order of this which is one expression then, mu the epsilon of the 

order of this one then for having a dynamic balance you must have pi of the order of the 

epsilon, so that there is no sort of storage at of energy at any intermittent condition, so 

whatever has energy that has been extracted the same energy is dissipated and this goes 

on in a cycle. So, pi is of the order of epsilon and the other constraint is that the Reynolds 

number based on the smallest Eddy lane scale is of the order of one, this we have just 

discussed why?  

So, that will imply that v eta by mu is of the order of one, so based on these it is possible 

to relate what is the length scale of the system or the largest Eddy with what is the length 

scale of the smallest Eddy. So, let us try to do that it will just require some algebraic 

manipulation before doing that, let us try to characterize what is v, so v square is of the 

order of or let us first characterize what is eta, then we can characterize v on the basis of 

that, so eta square is of the order of mu v square by epsilon, so if you call this as 1, 2, 3,  

4 this is from two, eta square is of the order of mu v square by epsilon. Now, from four 

you can replace v and write v is of the order of mu by eta, so mu into mu square by eta 

square epsilon this is using four.  

So, eta 4 is of the order of mu cube by epsilon and eta therefore, is of the order of nu 

cube by epsilon to the power 1 by 4, see the smallest Eddy length scale does not depend 

on directly the features of the large Eddies, but it depends on the rate of dissipation of the 



turbulent kinetic energy and the kinematic viscosity and this length scale is known as 

Kolmogorov length scale. 

Now, we can try to access that how this Kolmogorov length scale relates to the system 

length scale, so if you have the Kolmogorov length scale the corresponding velocity that 

you can obtain by using any of these relationships that is if you obtain v by using for 

example, v eta by mu of the order of 1, then from that you can obtain v that is known as 

Kolmogorov velocity scale, now if we want to relate it with the system scale see you 

have pi of the order of epsilon.  
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So, in the system scale you have u cube by l of the order of mu v square by eta square, so 

this is from three further v eta by nu is of the order of one, so you can eliminate v and 

write this as nu in place of v you can write nu by eta nu square by eta square eta square 

this is from four, so you have eta to the power 4 is of the order of mu cube l by u cube. 

So, if you want to relate eta with l you divide both sides by l cube, so eta to the power 4   

by l to the power 4 will be of the order of u cube l cube by mu cube so that means, you 

have eta by l to the power 4  is of the order of Reynolds number l to the power minus 3 

why we have defined the Reynolds number on the bias of this one is because this you 

have from the system level information that what is the system scale l large Eddy l will 

be of the order of system scale. So, that we can write eta by l is of the order of Reynolds 



number to the power minus 3 by 4 where this Reynolds number is based on the large 

Eddy scale. 

So, now let us see that what we actually, let us try to have a feel of what do we actually 

mean by a wide range of length scales. So, if you have let us take an example say 

Reynolds number of the order of 10 to the power 4 then what is eta by l? 10 to the power 

minus 3. So, if it is 10 to the power minus 3 then we can see that the system the largest 

Eddy scale and the smallest Eddy scale, they are differing by this order which is quite 

large and greater and greater the Reynolds number this length will differ in a larger and 

larger manner.  

So, what we can see that you have a large Eddy which has its own characteristics, so you 

need to capture that if you are trying to capture the physics of turbulent flow you would 

need to have the smallest eddy that you need to capture, those are like of the order of 

molecular scale and think about the continuum simulation of the navies oxicuation, 

where you are interested to capture such a small scale, so in a system you have various 

scales you need to capture all the scales to get the entire physics of energy cascading and 

capturing of all those length scales in single continuum simulation is very, very 

challenging, because over and above this multiple length scale and of course, multiple 

time scale it is faceted by the fact that there is a entire degree of randomness in the flow 

that means, what do we speak of? When we say that there is a randomness, it is highly 

sensitively dependent to the initial condition. 

So, if you have a say let us say you want to find out u versus time, so at time equal to 

zero the particular point say this was u, so then as time evolves, so let us say that u 

evolves in this way, now if you slightly change the initial condition by a very small 

infinitesimal change which is nothing but something which can be within numerical 

errors, but that can lead it entirely to a different orbit, so it is a hallmark of something 

known as K O T advection and in fact, in a turbulent flow vortices at vex chaotically 

over space and time. We will see later on that what is the role played by vorticity in the 

in the dynamics of turbulent flow, but what we can see here is that this highly sensitive 

dependence to initial condition is also one of the hallmarks of turbulent flow and that is 

why it is very difficult to model it numerically, because if you have a slight change in the 

initial condition if you have a slight numerical perturbation it may entirely lead to a 



different solution. So, dealing with the actual instantaneous quantities in turbulent flow is 

not a very easy thing. 
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Now, we just mentioned about the vortices features and it is not a bad idea to talk about 

the vortices dynamics in turbulent flows, so vorticity transport to have mathematical feel 

on how to express or explain the vorticity transport, let us start with the navier’s stokes 

equation. So, what we have written here is we have written the navier’s stokes equation 

without anybody forester in a vector form, so it is like if you we have written the velocity 

vector u in a single term, you can obtain this by finding a vector sum of x component of 

Navier Stokes equation, y component of Navier Stokes equation, and zee component of 

navier stoke equation. 

Now, in from velocity we want to get the vorticity, so what we can do simply we can 

take cal of both sides in this equation, so we take cal of both sides Del cross, so if you do 

that and we define Del cross velocity as the vorticity vector which you call a zeta plus 

now before taking the Del cross, you can simplify this particular term by using a vector 

identity, this a vector identity to write this corresponding term now ,the right hand side 

will become mu Del square zeta minus now recall from vector calculus that cal of 

gradient of a scalar is equal to zero, so this will be null because it is called of gradient of 

the scalar pressure similarly, here the first term it is cal of gradient of a scalar v that is u 



dot u square, so that will also be a null and hence what we will get you will get rho 

minus Del cross u cross zeta because Del cross u is zeta.  

So, this is equal to zeta, is equal to mu del square zeta, now this term we can write again 

by a vector identity zeta dot del u and u dot del zeta one with the opposite sign as that of 

the other this includes the minus sign, so you can write rho Del zeta Del t plus u dot del 

zeta is equal to zeta dot del u plus mu del square zee, this incidentally is the total 

derivative of zeta the capital D D T of zeta. So, this gives a vector evolution of vorticity 

there is one  rho here, now we can see that it is like a sort of advection diffusion equation 

with a source, so you have the left hand side as a transient term and the advection term, if 

you can recognize this is the diffusion term and this is something like a source now what 

is the source of vorticity?  

So, that means there is some source of vorticity and what is that source of vorticity in a 

turbulent flow? This is a mathematical derivation not so complicated, but at the same 

time once we get a term as a source it is not so easy to interpret  it physically that what 

does it do for turbulent flow, so let us try to use more simple analysis or analogy to 

figure out that what this source term is essentially signifying and then we will relate that 

with these derivations. 

Now, let us say that you have large Eddy in a turbulent flow the Eddy is a lump of fluid 

with certain rotationality, say rotating lamp of fluid, so to say in very simple language, so 

it will have its movement of inertia and an angular velocity omega, now if you consider 

D DT of I omega this is what it is I d omega d t plus omega DI Dt, because we are 

considering a fluid flow type of analysis we are considering the total derivate, but it 

essentially behaves in the same way as that of the ordinary derivative with regard to the 

rules of differentiation, so we can use the product rule now this is what, this is basically 

the time rate of change of angular momentum.  

So, this is equal to what? This is equal to the net torque that is acting on the system and 

here the torque that acts on the system is to dampen out the surface that is the viscous 

torch, so we can write this as T v, where T v represents the viscous torque. So, we can 

write D omega Dt, let us write together with a vorticity transport equation, so that we can 

get one to one analogy. So, D omega Dt is equal to minus omega by I DI DT plus T v by 

I so, omega is like angular velocity and we know that angular velocity has some 



relationship with the vorticity of the flow, so these two terms have sort of analogies not 

this single term does come together that is capital D D T this we know that, it is a 

viscous term mu because viscosity is present therefore, we can conclude these term and 

these term must have identical physical meaning. 

So, the term rho zeta dot del u has a qualitative physical meaning of the term equivalent 

to minus omega by I DI DT, so let us try to find out the physical meaning of that, so to 

do that let us consider a large Eddy scale as an example. So, if you consider a large Eddy 

scale large Eddy scale, so if you consider a large Eddy scale what will happen? If you 

consider a large Eddy scale what happens to the viscous torque? In the large Eddy scale 

the viscous torque is negligible because inertia force dominates much, much more over 

the viscous effects.  

So, for the large Eddy scale capital D D T of I omega is equal to zero I omega is 

conserved an angular momentum is conserved, so this is one of the peculiarities of the 

large Eddy where the angular momentum is conserved, so then for the large Eddy scale 

we can write D I Dt is equal to minus I by omega D omega Dt, now consider an Eddy, so 

Eddy is going to, a large Eddy is going to extract energy from the mean flow similarly, a 

little bit of smaller energy smaller Eddy will extract energy from the larger Eddy in this 

way energy is cascading. 

So, when the little bit of smaller Eddy extracts energy from the larger eddy what will 

happen to its angular velocity? It will increase because its rotational kinetic energy will 

increase, so when thSat is increasing that means, capital D D T of omega will be positive 

because with time the angular velocity of that it is increasing. So, with time if that is 

increasing, now I am momentum inertia which is positive and omega remember here we 

are writing it in the same sense, so whatever is the omega sense here the same omega 

sense is here, so that if d omega d t is positive then this right hand side will be negative,  

if this is positive then DI DT is negative.  

So, DI DT is negative means what? The vortex element now will have a reduce 

movement of inertia how can it do? So, if the vortex element is like this it is not 

changing its volume say it is say it is an incompressible vortex element, so what it is 

doing? It is evolving into a structure where it is bit of elongated, so that its effective 

radius of direction goes down that is how its moment of inertia can go down, so its 



earlier radius was this scale now its radius is roughly this scale, so what happens the 

vortex element appears to be stretched or elongated and this vortex stretching is a very 

interesting thing, because of this elongation you have a greater chance of interaction of 

one vortex with the other.  

So, that is one physical aspect, but the interesting physical aspect with respect to 

vorticity transport is that there is intensification of vorticity due to stretching of vortex 

elements or associated with the stretching of vortex elements because of stretching of 

vortex elements you have the DI Dt negative and that will make d omega DT positive or 

if you think terms of the other way if d omega DT is positive then DI DT is negative, so 

you, all in all we can say that there is a very interesting phenomenon in turbulent flow 

called as vortex stretching, by virtue of which you have intensification of vorticity that is 

angular velocity increases in terms of magnitude with stretching of vortex elements.  

So, what we can conclude that whatever is that intensification of vorticity due to 

stretching vortex elements that effect of vortex stretching is must be given by this term 

because this term is associated with DI DT with sort of indicates the effect of change of 

moment of inertia which occurs due to vortex stretching. So, the source term here it 

appears in the vorticity transport is because of stretching of vortex elements and this is 

one of the important physical issues in turbulent flow.  
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So, with this background we will now go to the statistical representation of turbulent 

flows the question is why should we go to a statistical representation of turbulent flows? 

What is the need? We have seen already that there is a high level of fluctuation local 

fluctuation, the fluctuation may be time dependent, the fluctuation may be specially 

dependent, but high level of fluctuation of the transport quantity in a turbulent flow and 

they are highly sensitive to initial conditions, so it all makes a deterministic treatment of 

the turbulent flow very difficult and one has to go for a statistical analysis.  

So, the randomness in turbulent flow for example, if you consider a turbulent flow 

velocity at a particular location as a function of time you can get such a scenario, so 

because of random fluctuation at each and every location at an at each and every time 

and these are truly random and highly sensitively dependent to the initial condition, it is 

very difficult to treat them deterministically, so that is a numerical challenge in fact, a 

theoretical challenge not just a numerical challenge. 

Now, what you can do is you can for the time being considered it as a super position of a 

mean behavior and a fluctuation on the top of that, so this red line let us say is a mean 

behavior and whatever fluctuates with respect to that is a fluctuation, so we can write 

that the instantaneous quantity is equal to mean plus fluctuation now it may, so happen 

we have to remember one thing the turbulent flow is by nature always three dimensional 

and unsteady, but when you statistically average it may be possible to have a statistically 

average steady behavior how it is possible? Let us take another example, let us say that 

this is the mean and may be this is the variation of the instantaneous velocity at a given 

location, so you can see that it is actually unsteady, but when you take the mean 

statistically the mean is steady such a turbulence is called as stationary turbulence. So, 

when we have a mean, we also have a standard deviation with respect to mean, so you 

can represent a turbulent flow with respect to mean standard deviation codilation 

coefficient very much similar to what you do for any statistical analysis, now when you 

do that there are certain important special types of turbulent flows that appear which let 

us discuss for the sake of completeness one is called as a homogenous turbulence.  

So, what is a homogenous turbulence? The turbulent statistics are independent of 

coordinate translation that means, in other words they are position independent that is 

why if you translate the coordinate, you will get the same turbulent statistics by turbulent 

statistics if you may mean the R M S or the mean like this. So, how do you evaluate the 



R M S? See u bar is the average of u, then u is equal to u bar plus a fluctuation, we will 

come into this in more details as we consider the turbulence models, now when you 

consider u equal to u bar plus u prime then u minus u bar this is deviation from mean is u  

prime square of that is u prime square and mean of that if we give it by a symbol then 

that is mean square deviation and square root of that is root means square deviation or R 

M S. 

Now, if we consider something called as isotropic turbulence, here it means that the 

turbulence statistics are independent of rotation and reflection of coordinates in other 

words it means that it is orientation independent because rotation what it does? It 

changes the orientation, so if you had x y z and you have some description of R M S of 

u, R M S of v and R M S of w, then if you have a rotation of this x y z to mu x, mu y mu 

zee then with respect to this rotated axis you will get the same statistics of R M S of u, R 

M S of v and R M S of w. So, you can say that the turbulence statistics are independent 

of rotation and also reflection plus translation that means, isotropic turbulence by 

definition must be homogenous, because when you say it is translation independent in 

variant that means, you are essentially talking of a homogenous characteristic, so these 

are some terminologies. 
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Now, next is that we have talked about the average or the mean question is what type of 

mean? Or what type of average? There are different types of averages which are possible 



and let us try to understand those. Those are called as time average, space average and 

ensemble average. So, what is time average? What you do? At a given location, you 

measure the property as a function of time and then find out an average, so when you say 

you find out an average how you write a time average? So, let us say you write, so when 

you write an average that means, you have u versus time, so to write the average you 

must integrate u with respect to time over a time period divide by the total time period 

take the limit as this time period t, so may be this from t to small t to small t plus capital 

T we take a limit which technically we say capital T tense infinity this is just a 

representation. 

What we physically mean by that? So, now, let us consider the issue of wide range of 

time scales, we had earlier discussed about the issue of length scales, now let us focus on 

the issue of time scales. So, if you see that in a turbulent flow there are some turbulent 

fluctuation length scales times scales like this one’s, so these are very small time scales 

over which the turbulent quantity fluctuates, on the other hand there is a system time 

scale, so you can see that here with respect to system, it does not change on an average, 

so in the example curve shown above the bottom one what we can see, we can see that 

with respect to time there is a system characteristic time scale, where you have a sort of a 

periodicity over the system and that time scale is much larger than the turbulent 

fluctuation length scale. 

So, now when we consider capital T tense to infinity we mean that it is a time scale 

which is much larger than the turbulent fluctuation time scale, but it must also be much 

smaller than the system time scale otherwise, let us say if you literally interpreted as t 

tense to infinity without considering what physics it talks about then you take the total 

time as the starting time to the end time an average over that you lose all the transient 

information in between. So, it is not the total large time scale it is a time scale which is 

definitely much larger than the individual fluctuation scale, but much smaller than the 

overall system characteristic time scale that we call as capital T, so this we call as time 

average. 

Now, what is space average? Space average is like the similar thing you replace t with x 

special coordinate, so what you do is at a given time you make an average over position 

for a time average at a given position you are making an average over time, for special 

average given time you make an average over position and the third one is ensemble 



average. So, what you do here is you do a large number of repeated experiments, hugely 

large number of repeated experiments and then once you do that when you find out the 

statistical average of those repeated experiments under different conditions then that 

average is called as, so you basically have the say similar it is a stochastic type of 

experiment, so similar boundary condition similar arrangement, but many different 

experiments.  

So, when you have many different experiments all those experiments will give you some 

average and that is known as ensemble average, so if you have a stationary turbulence 

what will that imply? It will imply the time average is equal to ensemble average  

because if you have stationary turbulence what you are having? If you are having 

stationary turbulence; that means, turbulence statistics do not change with time, so doing 

getting a reading at a different time is as good as getting a reading for a different 

experiment, so averaging over time is as good as averaging over different random 

experiments, so time average equal to ensemble average similarly, for homogenous 

turbulence you have space average equal to ensemble average, so for homogenous plus 

stationary turbulence you have time average, equal to space average, equal to ensemble 

average and this in statistical analysis is known as ercodic hypothesis.  

So, from hence forth we will assume that the erotic hypothesis will be valid, so when we 

will be doing an averaging will assume that we are either doing time average space, 

average or a ensemble average, but if erocodic hypothesis is the is valid one can be 

replaced in terms of equivalence of the other and so we will call it as a averaging, but we 

that averaging may be time space or ensemble. we stop here today we will continue 

again in the next class thank you.Thank you  


