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Lecture No. # 40 

What is there in implementing a CFD Code 
 

So far, we have learnt certain techniques for solving CFD problems. Now, the question is 

how to apply these techniques? CFD after all is a subject, where you want to apply the 

understandings that we have developed for solving practical problems. Once you are 

interested to do that, the first and foremost step will be to write a CFD code. These days, 

lots of CFD codes are available; some CFD codes are commercially available; some are 

open source code; and, some are in-house code, that is, code developed by various 

research groups for solving their tailor-made customised problem. 

Now, whatever may be the case, it is often necessary to use the code rather than starting 

fto write a code from the scratch. It is many times not a very bad idea though not a very 

idealistic approach, because nobody will give us a credit of reinventing a wheel. So, if 

somebody starts writing a CFD code at a particular stage and at the end, interested to 

solve a very challenging CFD problem, maybe it will take years to write the code and 

then solve the problem. And, one may be interested to use the code in a way to adopt the 

code to the particular requirement of the problem that he or she is interested to solve. 

And, that may be one of the practical approaches for modern day CFD, where you really 

have lots of CFD codes available. 

Question is if such a generic code is available with you, what are the intricate features 

that are common to most of these codes and how to go about the use of these codes for 

solving the problems? Now, because of obvious restrictions, we will not be considering 

any particular commercial code in this particular lecture for illustrating that how to go 

about that. But, we will consider a generic approach that can be used for any sort of CFD 

code and to go ahead with solving a problem. 
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Let us try to go through this presentation and let us see that what a generic CFD code 

contains. A generic CFD code contains three basic modules: one is a pre-processor; 

another is a solver; another is a post-processor. 
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Let us go through the basic structure of a CFD code. Many times we are abstracted of 

this basic structure when we are using a code, because we are only using the user 

interface. But, if you see that, first if you consider the pre-processor, the pre-processor 

has different functionalities. One of the important functionality is to create geometry and 



mesh for solving a problem. We will go through one or two examples to illustrate that. 

But then, what you need to do? You need to set the transport equations that need to 

solved, because the code does not know that which equations you need to solve. So, you 

have to specify which equations you need to solve; set the thermo physical properties. If 

it is an unsteady problem, set the time step sizes. 

Even if it is a steady state problem and you are using an unsteady mode, you can use a 

large single time step to convert an unsteady mode implementation into an equivalent 

steady state implementation. Set the convergence criteria or convergence parameters; set 

the initialization parameters; set the boundary conditions; and, set the source terms. 

These are certain pre-setting things that you could do. Then, you can initialize the 

solution when you go through the solver; then, adjust the source terms and boundary 

conditions if they dynamically vary with iterations. Remember that in CFD, mostly, we 

use iterative techniques. And, one of the common reasons is that in the cases in which we 

want to solve Navier-Stokes equations, which are non-linear equations, iterative 

techniques are much more suited than the elimination techniques. 

Then, for example, if we are interested for solving a fluid flow problem, then we must 

solve at least the continuity equation and the momentum equation. This is the basic 

requirement of solving the flow field. Then, you can solve other scalar transport 

equations depending on which other equations you need to solve. For example, if you are 

required to solve energy equation, then you can solve that; if you are required to solve 

the species conservation equation, you can solve another scalar transport; then, update 

the properties if they dynamically vary with iteration or time. So, some of the properties 

may not be constant, but they may vary with iteration or time and that you need to 

update; and then, you check for convergence. If convergence is not achieved, you go to 

the next time step or next iteration. In this way, iterations are done in a solver. And once 

iterations have converged and you have come to the end of the time domain, time equal 

to last; if it is yes, then you come out of this solver and you go to the post-processor, 

where you visualize and analyse the results in terms of graphical outputs like in terms of 

contour plots, vector plots like that. 
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We just quickly go through these steps for a generic case; say, first you said geometry 

and mesh. So, for example, it is a g y for selecting whether it is a 2D or 3D problem. 

Then, the domain lengths along x and y direction; and, select the equations that you need 

to solve. 
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For example, here you solve momentum equation, energy equation and some additional 

scalar transport equation. 
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Then, set the thermo-physical properties. The thermo-physical properties may be 

constants; may be specified as function of the variable itself for example, the thermal 

conductivity; may be a function of temperature say linear function of temperature. So, 

these are certain facilities, which may be available with GUI; or even if it is not a GUI, it 

may be available with a standard user interface, not a graphical user interface. Then, it 

may be a programmable user interface through which you do or like this one where you 

have the graphical user interface. You can also have a step function of temperature, that 

is... These are some options, but you could have several other options. 
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If none of these options feet, for example, if you say that you have a property variation, 

which is neither constant, non-linear nor piece-wise constant, but some other variations, 

then you have write a user defined function for that. And, we will see later on that how to 

write user defined functions. Now, set the initialization parameters. For example, you 

can set the initial velocity and then you can set the time steps. So, you can have a fixed 

time step size or you can have an adaptive time step size. For example, a problem can 

have different time scales at different instants of time. For example, you have a domain; 

you suddenly heat the domain. So, what you see that initially, there will be rapid 

transients. So, you need to keep very small time steps to capture the changes within those 

small time intervals. But, later on when the system has adjusted that change to itself, then 

you may employ a larger time step size. So, you may use adaptive time step size. 

Then, you can set maximum iterations that you may allow for time step if it has not 

converged within those iterations. So, remember that within each time step, it is solving 

all the equations algebraically. So, it has gone through the iterations. So, if maximum 

number of iterations has been exceeded, then it may give you a message that 

convergence has not been achieved if it does not satisfy the convergence criteria. Then, 

certain additional things like if gravity is important for your problem as a body force, 

then you enable gravity and set the auto save frequency; that means, if you want to save 

results within interval of certain time steps. For example, it is a problem say where you 

have the time domain from 0 to 10 seconds and every 1 second you want to see the plots. 

So, every 1 second you want store the result of your analysis. So, that is what we mean 

by auto-save frequency. 
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Then, set convergence parameters. So, convergence criteria and the relaxation factors; 

and, for the convergence criteria, you can use the relative error tolerance. So, we have 

already discussed that why we generally prefer relative error as criterion for convergence 

rather than absolute error. 
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Then, set the boundary conditions. So, you can use different types of boundary 

conditions for example, momentum equation. 



(Refer Slide Time: 09:16) 

 

Then, energy equation – so, you can have boundary conditions for different equations. 
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Species transport equation and for any other generic scalar equations. 
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So, for each type of equations you can use different boundary conditions. We will go into 

the boundary conditions in more details through one or two examples that we will see 

later on. 
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Then, let us come to the concept of user-defined codes. So, usually you use user-defined 

codes for accommodating something which is not there in the standard GUI or standard 

programmable interface. So, for example, if you have valuable thermo-physical 

properties and that you want to implement, that is one case. 
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Then, if you have user-defined code for boundary conditions; so, for example, if you are 

interested to have certain boundary conditions, which are not there in the standard GUI, 

then cab you use the user defined codes. 
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Or, maybe some special source terms. So, usually you can make the CFD code a fool by 

implementing some equations which are not the standard fluid flow equations. The 

equations may be... In whatever form, you may write it in a general conservative form. 

And then, whatever extra terms that have appeared, you dump that in the form of the 



source term. So, we have already discussed that in CFD, when you write a governing 

equation, how do we make a CFD code understand that it is in the standard conservative 

form? We write it in the standard conservative form; it differs from one equation to the 

other in terms of a diffusion coefficient and a source term. So, if you specify the 

diffusion coefficient and a source term no matter how complicated it is, then you can 

implement any equation in that particular form to solve the problem. So, you may require 

user-defined code for implementing complicated source terms. 
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In that way, you can implement very complicated physical issues in a generic CFD 

solver. Then, you press the submit button to start the background solver code in this 

example and it will run and it will be showing you the level of iterations and how it is 

converging and all these. 
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Then, you can go to the post-processing parts. So, once the results are obtained, you can 

show contour plots. What are contour plots? These are isolines; that means, lines with 

constant values; different lines with different constant values. And, you can also show 

vector plots, where you have the velocity field for example. 
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Now, let us go to the user-defined subroutine; or, in some cases, it is also called as user-

defined function. Subroutine is a term borrowed from Fortran and function is a term 

borrowed from C, but in either way, it means the same. So, what is the user-defined sub 



routine? It is a subroutine written by the user that can be linked dynamically to the solver 

code to enhance the standard features of the code. Since the standard interface cannot be 

programmed for all possible anticipated needs, see somebody who develops the CFD 

code develops the standard interface, either a graphical interface or a programmable 

interface. But, that cannot be customised to all possible needs, because different 

problems may have different intricate features with the governing equations, boundary 

conditions, etcetera. 

And, in different cases, you require to customise all these, that is, the boundary 

conditions, source terms and thermo-physical properties. In many cases, these need to be 

dynamically adjusted during the solution procedure. This is achieved by dynamically 

linking the user-defined subroutines with the main solver program, where it updates the 

desired thermo-physical properties, boundary conditions and the source term with every 

iteration. 
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Let us quickly see that where do we require user access to the solver code. So, set the 

custom thermo-physical properties, boundary conditions and source terms before 

entering the solution loop. This you usually set as an initialization if you do not want this 

to be dynamically change; or, even if you want this to be dynamically change, you at 

least initialize those. So, that is one of the places. Then, you may require to dynamically 

adjust the source term and the boundary conditions as the solution progresses. That is 



another place. And, you may require to dynamically update the properties. So, usually, 

the whole idea is that the solver of a good CFD code is very robust. So, you do not want 

to touch the solver; you do not want to get into the solver. Keep the solver as it is, but try 

to have stronger interaction or more intricate interaction with the solver by writing user-

defined functions by facilitating the solver to address more complicated problems than 

the standard GUI will allow. 

(Refer Slide Time: 14:18) 

 

When you are writing the user-defined functions, you need to be careful about certain 

things like if you are using a grid terminal... if you are using staggered grid for example, 

what is the grid terminology? If you are using a collocated grid, then a terminology is 

relatively straightforward. But, if you are using a staggered grid, you do not have the 

same locations where you solve for the momentum equations and the other scalar 

equations. So, you basically have different control volumes. So, in this particular figure, 

wherever you have i with subscript u, that indicates that this is the location, this is the 

index where you are solving the x momentum, u momentum equation. 

Similarly, j with index v will indicate that you are trying to solve for the y momentum 

equation. i index for x momentum and j index for y momentum. And, in this particular 

example, we are using certain nomenclature; it may be better to introduce that. So, 

number of main sales nx comma ny; nx along x, ny along y; number of u-cells is nx 

minus 1 comma ny. So, because it is staggered, number of sales for x momentum 



equation solution will be one less than the total number of cells for the other scalar 

equations. Similarly, number of v cells is nx comma ny minus 1. 
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Now, you may use loops while writing the user-defined subroutines. So, this is an 

example where you are writing loops using fortran as a structure. There are certain user-

defined functions which are neither fortran nor C; they have their own structures. So, this 

is just a generic example. Do not try to think that this is the user-defined function syntax 

for all. We are not trying to teach you a syntax. The whole intention is not to teach you 

how to run a particular code, but to illustrate that what is the basic principle in running 

different codes; what is the common principle. 

Here for example, you can use this do loop and end do. So, this is just like a fall loop 

instead of a do loop if you use C. So, if you have a scalar equation source terms, see the 

source terms are defined for only interior grid points not the boundary points, because 

source terms are for control volumes; boundary terms do not belong to any control 

volumes. So, that is why you see that i starts from 2. So, in the scalar equation, i starts 

from 2; it ends with nx minus 1. So, it ensures that it is only for the interior grid points. 

For the u-momentum equation, on the other hand, you see i starts with 3, because it is 

staggered; it is shifted by 1. So, i starts with 3. 

On the other hand, for the v-momentum equation, j starts with 3. This is for the source 

term for the interior grid points. And for different boundaries, you have different values 



of i and j. For example, if you have a square domain or a rectangular domain, a 

rectangular domain will have top, bottom, left, right like that. So, we are giving an 

illustration through a rectangular domain. So, i equal to 1 to nx for the bottom. So, 

remember that horizontal line we are considering as x and vertical line as y. So, bottom i 

equal to 1 to nx and j equal to 1. The top will be j equal to ny; left will be i equal to 1 and 

right will be i equal to nx. So, this is for the scalar equation. For the u-momentum 

equation, i will be from 2 to nx, not 1 to nx. That is the only difference. And, for v-

momentum equation, j will be from 2 to ny. That is the difference. 
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Let us go through some representative examples for user-defined functions. Let us 

consider that you require a gravity acting in a x-direction. Let us say that the code has 

gravity acting along y-direction. Now, you have to implement gravity acting along x-

direction; of course, you can swap x and y if you want. But, if you want to implement it 

by yourself; let us say the code has no provision of implementing a gravity source term 

and you want to implement that. So, where do you want to implement the gravity source 

term? You want to implement the gravity source term in the x-momentum equation; and, 

the gravity source term is let us say it is because of the natural convection. So, it is like 

rho g beta into T minus t infinity or t reference. So, just recall from your basic 

understanding of natural convection that if you use a Bozanics approximation, then you 

can write the gradient of the variation of density in terms of the variation of temperature. 

And, that is expressed in terms of volumetric expansion coefficient. So, it will come out 



to be rho g beta into T minus t reference or T minus t infinity depending on whether it is 

an enclosure or it is a problem with atmospheric boundary layer. 

Whatever it is, now, you have to keep one thing in mind, if you are using a staggered 

control volume, what is the challenge here? See you have the temperature solved at the 

main grid points; whereas, you have to specify the x-momentum source term at the 

staggered location. So, you have to interpolate the temperature at the staggered control 

volume location as a function of the temperature at the main grid points. That is what we 

are doing in this example. So, for example, we can linearly interpolate the temperature. 

So, that is what we are schematically showing here; you have x i minus 1, x i; and, we 

require to interpolate it at x i u. That is the staggered location. And, we require to find 

out what is T i u comma j. So, for that, we are using this linear interpolation formula. 

And, in this linear interpolation formula, we are using term f x, which is like x i u minus 

x i minus 1 by x i minus x i minus 1. This is a particular variable, which in the code that 

is being used, that variable is already defined. So, if you know that there are certain 

variables, which are already defined in the code, you may make use of that to enhance 

the calculations. 

Once you do that, let us go through the structures. See if equation logical equal to x 

mom; that means, if it is x momentum equation. How will the code know that for which 

equation you are interested to write the source term. So, for that, there must be one if. So, 

one if for letting the code know that for which equation; then, you go to the loop and 

write the corresponding average T. See i equal to 3 to n x minus 1, because it is 

staggered along x; j equal to 2 to ny minus 1, because it is not staggered along y; it is 

staggered along x only. So, then we are writing this con is like the constant source term 

like that s c plus s p phi p; that s c we are calling as con. So, that con i comma j equal to 

con i comma j, that is, whatever was initialized plus some rho initial, that is, the 

reference density into g into beta into T average minus t reference. So, that is how you 

simply implement the natural convection. 
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Then, another example; let us say that you have a thermo-solutal convection; what is 

thermo-solute convection. So, we know that there are cases in which you have free 

surface flows, that is, you have an interface between two fluids or a free surface where 

the interface is between a liquid and a gas. Now, you may have a temperature gradient on 

the surface of the liquid. And, for most liquids, the surface tension is a strong function of 

temperature. So, if you have a gradient of temperature, it induces a gradient in surface 

tension. And, because of the gradient of surface tension, it can induce an interfacial flow, 

which we call as Maranoni flow. 

Now, you can have a temperature gradient; you may also have a concentration gradient if 

you have a multi-component system. In the multi-component system, you may have a 

concentration gradient. And, in the concentration gradient, the surface tension may also 

be a strong function of concentration. So, you can write the boundary condition in this 

way. So, the free surface should be free of shear; that means, the shear due to viscosity is 

balanced by the shear due to surface tension. So, what we are writing, this is like mu du 

by dy is for the viscous shear. And, shear due to surface tension, you can write for 

example, del sigma del x. So, del sigma del x is del sigma del T into del T del x, where 

sigma is the surface tension coefficient. So, del sigma del x is a shear stress because of 

gradient of surface tension, where sigma is a surface tension coefficient. So, y for 

example, is the direction normal to the interface and x is the direction tangential to the 

interface. That is what nomenclature we are considering. 



So, you have del sigma del x as del sigma del T, which we call as sigma T or temperature 

coefficient of surface tension; that means, how surface tension changes with temperature; 

that is, the rate of change of surface tension coefficient with temperature. So, this is del 

sigma del T into del T del x or sigma T into del T del x plus del sigma del C into del C 

del x; del sigma del C is sigma C. So, you have two coefficients of surface tension: one 

function of temperature, another temperature of concentration. And, this is what you are 

writing along the tangential direction to the interface; this is again a stress tangential to 

the interface; and, these two tangential stresses are balancing each other. But, this 

tangential stress is a function of the normal gradient of velocity; that is what Newton’s 

law of viscosity tells you. This is true only if you have v equal to 0; otherwise, you have 

mu del u del y plus del v del x. But, if you have v equal to 0, that is, if you have an 

interface where it is oriented along x, you have no penetration boundary condition across 

the interface. So, v equal to 0. 

The discretized boundary condition will look like this. So, what you first do, you 

discretize the boundary condition. So, you write this in terms of corresponding 

differences. So, del u del y is like delta u by delta y. So, like u i comma n y minus u i 

comma n y minus 1; that is delta u by y n y minus y n y minus 1; that is, delta y equal to 

sigma T into del T del x like delta T by delta x plus sigma c into delta c by delta x. And 

then, you rearrange this equation algebraically. What is your objective while you 

rearrange? While you rearrange, you write u boundary u i comma n y; n y is the top most 

one. So, we are considering the top surface as a free surface as a function of u i comma n 

y minus 1. So, as we have already discussed, you write the boundary as a function of the 

interior, not interior as a function of the boundary, because you are giving the boundary 

condition, not the interior condition. So, boundary should be expressed as a function of 

the interior. So, you can see that this do loop in this do loop, you write the boundary 

condition in this way, where you basically discretize this particular boundary condition. 
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Now, we will go through some representative case studies. So, two of the interesting case 

studies that we will go through will be, one is lid-driven cavity flow. So, there is a cavity 

in which the top lead is driven with a particular velocity and that induces a motion. So, 

this is a standard benchmark problem in CFD, which is known as lid-driven cavity 

problem. And then, a natural convection in a cavity, where you need to solve coupled 

momentum and energy equation. 
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Let us describe the problem of lid-driven cavity. You have a rectangular cavity; for 

simplicity, we are considering a rectangular geometry, but you can use different 

geometries while solving the problem. The lid-driven cavity is a standard problem, 

where you always use a rectangular geometry; or, in some cases, you may also use a 

cylindrical geometry. But, these are standard geometries. Now, in this example, we are 

considering the x as the horizontal direction and y as the vertical direction, and you are 

using different grid points along x and y. One important thing to mention is that the 

number of grid points that you are using, will it be uniformly distributed or will it be 

non-uniformly distributed? It depends on the problem. So, you can use uniformly 

distributed grids in general if you are solving a simple problem. But, just like, you may 

use non-uniformly distributed time steps. 

Similarly, you can use non-uniformly distributed grids. What is the situation in which 

you want to use non-uniformly distributed grids? Say you have boundary layer flow. So, 

when you have a boundary layer flow, you require to capture the strong gradients of 

velocity and temperature or whatever depending on what type of boundary layer it is 

within the boundary layer. To do that, you require to have a large number of grid points 

within the boundary layer, at least a substantial number of grid points. So, if the gridding 

is such that you do not have any grid point within the boundary layer, say one is at the 

boundary and the next one is outside the boundary layer, then you are not able to capture 

the physics within the boundary layer. So, where you have strong gradients in variables, 

there you have to cluster fine grids; and, where you do not have strong gradients, there 

you do not unnecessarily keep fine grids; there you can keep code grids. But, the art of 

meshing is that you do not suddenly jump from fine grid to a code grid. 

You go through several transitions, because a sudden jump from a fine grid to codes grid 

can make the system of algebraic equations that are being solved unstable. So, there is a 

relationship with the nature of meshing and with the nature of algebraic equations that 

get generated out of it. So, if there is a variable meshing, one has to have a gradient. So, 

refined mesh at locations where you want to capture strong gradients; and codes are 

meshed where you do not want to capture such strong gradients. Now, the question will 

come that then how will you ensure that your results are fine, because you may use 

different grid points and you may end up in getting different solutions. The answer is that 

at the end, you have to establish that your results are grid independent; that means, if you 



use a refined grid and you get a solution, then you have to show that with further 

refinements of different levels your solution does not change. And then, that is called as 

a grid independent solution. So, grid independent solution is one of the bench marks of 

accuracy in a CFD problem implementation. 

Now, let us look into this problem definition. So, you have the top boundary being pulled 

towards the right with a velocity 0.1 meter per second; the left and the right walls are 

subjected to 0 velocities. So, no sleep, no penetration boundary condition; and, the 

bottom wall is also subjected to no sleep, no penetration boundary condition. So, now, 

you have to model the problem. So, what is modelling? Modelling is basically 

idealization of a practical problem with certain assumptions. That is what is modelling. 

So, you model this problem by considering that it is an incompressible flow for example, 

or it is a special case of an incompressible flow, where you have the density as a 

constant, because you may also have variable density incompressible flow. But, this is 

special case, where you have density as a constant. And, viscosity is another property 

that you require. So, for solving any problem, you first have to ascertain that which 

properties you require. That depends on which equations you need to solve. So, you can 

look into these equations and see that you require the density and viscosity as the two 

properties. Then, what are the variables that you are solving? You are solving u, v and 

pressure. Pressure you are solving as a relative variable if you are using simple or 

simpler algorithm. 

Now, initialization parameters, you may set the velocities as 0; you may use the time 

step, delta T of 10 and final of 500. These are generic examples. So, do not think that 

these are for getting highly refined solutions. These are just for illustration to begin with. 

Then, autosave frequency – per 50 time steps you can have autosave frequency; that 

means, at the end, it will only store the result, because 50 time steps will make it 500. 

Relative error tolerance – x momentum and y momentum, that is, u and v momentum, 

you set as 10 to the power of minus 5. These are just some examples; you may make it 

more strict more relaxed depending on your requirement. Some relaxation parameters 

you can put. We have already discussed in the context of Navier-Stokes equation that 

what are the relaxation factors and why do you need that to control the convergence. So, 

these are some examples. And, in this particular example, you take 40 grid points along x 

and y. 
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So, let us quickly go through the geometry. So, we set the problem as 2D; set the x-

direction domain length, number of grids along x; y-direction domain length and number 

of grids along y; and, select that you require solve only momentum equation. 
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Once you select, that you require to solve through momentum equation automatically 

accommodates the continuity equation, because these are all coupled equations and 

algorithm takes care of that. 
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Then, you specify the density, viscosity, set initialization and time stepping parameters, 

so that time step and the final time, maximum iterations per time step. 
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Then, the relaxation parameters and relative error tolerances. 
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And then, set the boundary conditions – top wall, bottom wall, left wall and right wall. 

So, you can have wall boundary condition. There are certain common types of boundary 

conditions like entry boundary condition – in some codes, it is called as inflow boundary 

condition. Exit type of boundary condition – in some codes it is called as outflow 

boundary condition. And, wall type of boundary condition and other types of boundary 

conditions, which are not falling in these categories. Like for example, interfacial 

boundary conditions. Now, these boundary conditions may discuss in the context of fluid 

flow. So, the velocity boundary conditions. Entry boundary condition is typically where 

you specify the velocity profile, specify the velocity. The outflow boundary condition or 

the exit boundary condition – where you specify that along the stream, the gradient of the 

variable is equal to 0. So, for example, if it is a fully developed flow, the outflow 

boundary condition is along x; there is no further change in u. So, del u del x equal to 0.  

Here, you can see that the top wall is moving towards the right in the lid-driven cavity 

example. So, it is neither wall nor entry nor exit nor free surface. So, we have to write a 

user-defined function for it. But, for the bottom wall, left wall and right wall, it is a wall 

boundary condition. So, by wall, it implicitly assumes it as no sleep, no penetration. So, 

if you want to implement a sleep, then you have to write a user-defined function. 
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If you want to implement a penetration through a pours medium, you have to write a 

user-defined function. The user-defined function for the lid-movement – you can see that 

you are writing u i m 1 is the number of grid points along y. So, this is like n y equal to 

0.1. So, you are specifying the u at the top; that is the meaning. 
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Usually, for fluid flow problems, you get results in terms of either streamlines or the 

contours of the stream function. 
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Or, the velocity vector plots. 
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Now, let us go through the second example, where heat transfer is also involved. So, it is 

a natural convection inside rectangular cavity. So, here the situation is that you have the 

top and bottom walls as insulated; whereas, the heat flux is supplied at the left wall and 

at the right wall with the magnitude of 500. So, if you consider Si units for example, it is 

500 watt per meter square. Here the energy equation and the momentum equation are 

coupled. So, when you have natural convection in a cavity... Here in this particular slide 



we have not purposefully kept one particular term in which there is a source term. Can 

you tell in which equation there will be a source term? 

Y-momentum (( )) 

In a y-momentum equation. So, in a y-momentum equation, there will be an additional 

source term, which you have to generate yourself. See the code does not know it. The 

code just knows that these are the generic equations that you need to solve. So, for the y-

momentum equation, it will be rho g beta into T minus t reference. That source term will 

be there assuming that the Bozanics approximation is valid. In this generic form, what it 

is written here, these are not necessarily the full forms of the equation. The full form of 

the equation will depend on what extra source terms that you need to use. And, if you 

need to use that, if it is already accommodated by the user interface, then you can just 

click that button; otherwise, you have to write a user-defined function. 

What are the properties that you will require here? The properties for the momentum 

equation, that is, density and viscosity; and, the properties for the source term that will 

require, that is, beta; and, the properties for the energy equation k and c p. So, these 

properties you need to specify. The initialization parameters u, v and t – these you 

initialize. Then, the time step again you use a time step of say 10 for example, and you 

set the relative error tolerances and relaxation parameters. Now, you also have the energy 

equation. 
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Now, let us try to solve the problem by considering the symmetry of the problem. See 

the problem is symmetric with respect to the centre line. So, if you pass an axis through 

the centre line, then the left-hand side and the right-hand side is exactly symmetry. So, 

you can solve half of the domain to save your computational efforts. So, what you do, 

you consider a symmetric half domain with... So, this is the centre line; this is the 

symmetric plane on the centre line of the rectangular cavity. So, you have to specify the 

boundary condition now at the centre line. 

What is the boundary condition on u? u equal to 0. Why u equal to 0? Let us come to the 

previous slide, if you consider the centre line. Now, if you consider some flow to right of 

the centre line, because of symmetry, the same flow will go to the left of the centre line 

also, so that the net will be 0. So, at the centre line, u should be equal to 0. And, because 

of symmetry, you have del v del x also equal to 0. And, del T, del x equal to 0. So, it is 

very important to ascertain what will be the types of boundary conditions. And then, let 

us try to implement this problem. 
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Set geometry, mesh and transport equation first is a 2D problem. So, we have selected 

2D x-direction domain length, y-direction domain length. See always use consistent 

units. You do not expect that any unit conversion will be done in internal to the code. So, 

whatever unit you are using, you will be just be giving numbers. So, you have to make 



sure that you are using consistent units. Then, specify number of grids along x-direction 

and number of grids along y-direction. 
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Then, set the thermo-physical properties. So, dynamic viscosity, thermal conductivity, 

specific heat – all these are constants. So, if these were functions of temperature, then we 

have already glanced through an example, where you can specify those as functions of 

temperatures also. 
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Then, the initializations; so, initialize the velocity and temperature. You may use a fixed 

time step for this problem; this is a relatively simple problem. So, one need not bother so 

much about variable time steps. Then, others – you can see that you do not have to write 

a u d f for gravity along y, because it is already accommodated within the GUI. So, you 

have a gravity option; you just click the gravity option here and give the value of 

acceleration due to gravity. So, remember, y is positive upwards. So, to make sure that 

you are implementing the gravity along negative y, you give the g as minus 9.81. But, it 

is not always necessary. You have to understand what is there inside the code. Maybe 

inside the code, gravity is already implemented along negative y. That is why do not try 

to use a code without trying to at least understand superficially what is there inside it; 

otherwise, you can make mistakes by considering some values which are not consistent 

with what has been put inside the code. 
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Then, set convergence parameters – u-momentum, v-momentum equation; you set the 

relative error tolerances. Also, you do the same thing for the pressure correction and the 

energy equation. 
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Set the boundary conditions – the top wall is the wall boundary condition; bottom wall is 

the wall boundary condition; left wall is neither wall nor entry nor exit; and, the right 

wall is the wall boundary condition. 
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The previous slide was for the momentum equation. Then, you come to energy equation. 

For a generic equation, we can have the boundary conditions. What are the different 

types? The Dirichlet boundary condition, where you specify the value; the Neumann 

boundary condition, where you specify the gradient; and, the mixed type of boundary 



condition, where you specify the value as a function of the gradient; of course, you can 

also have a periodic type of boundary condition. So, here in this particular example code, 

we are having possibilities of Dirichlet, Neumann and mixed. So, at the top wall, it is a 

Neumann boundary condition; it is insulated; that means, it is a heat flux boundary 

condition, where the flux is equal to 0. So, you have flux equal to 0. Bottom wall also, 

flux equal to 0. Left wall is Neumann boundary condition, because of what? Because of 

symmetry. It is not actually a wall. Left wall has come out because of the standard GUI; 

it is written as wall, but it is actually the axis of symmetry for this particular problem. So, 

at the axis of symmetry, across the axis of symmetry, you have flux equal to 0. And, the 

right wall – you have Neumann boundary condition, where the flux is specified. So, you 

can see that here at all the boundaries, Neumann boundary conditions are specified till 

you will... So, we have come across some examples where we had fallen in troubles, 

where in all boundaries, Neumann boundary conditions are specified. In this particular 

problem, we will not fall in trouble. Why? 

Initialization 

So, here the problem is a time dependent problem and unsteady problem. An unsteady 

problem can evolve from an initial condition. So, at time equal to 0, you have a particular 

value of temperature and that is a unique value. It is not an artificial iteration-driven 

value. So, if it is an iterative solution, then even if it is a steady state problem, you could 

start with initial guess. But, that is a guess, an artificial initialization. Here you have a 

real initialization, where at time equal to 0, you have a particular value of temperature. 

So, based on that level, it will subsequently evolve and it will not create any problem for 

having a Neumann boundary condition at all the boundaries. So, do not confuse those 

examples with this particular example that we are considering. 
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Now, user-defined subroutine that is there; what you do, you consider the left boundary. 

See at the left boundary, the velocity was neither inflow nor outflow nor wall. So, you 

have to write a user-defined function for... First is u; u equal to 0. So, you write u equal 

to 0 there. And, del v, del x equal to 0; that means, v 1 equal to v 2. Remember, for v, 

you are starting index with 1, because it is not staggered along... For y-momentum, it is 

staggered along y. So, v is not staggered along x. So, that is why the indices for v are 1 

and 2. These are subtle things, but I am repeating these over and again, because these 

help you to write the good user-defined functions. 

(Refer Slide Time: 45:26) 

 



Now, you can see that this is a contour in the half domain. So, because of the heat 

transfer to the system, there is a natural convection and you can see that there are strong 

temperature gradients along the wall; and, you have different stratified layers of fluid. 
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And, this is a stream function contour or a velocity representation. 
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For representation of velocity, you either you streamlines or you use velocity vectors. So, 

how do you derive these from your calculations? The velocities are directly derived. You 

may develop your own GUI or you may use some standard GUI or standard graphical 



softwares. So, there are some commercially available softwares also; and, there are some 

common academic user type of software also; that you can use. So, for example, this is a 

plot shown using matlab as a GUI interface. So, what you are doing here is you are using 

a matlab inbuilt function called as quiver. So, if you have u and v as two velocity 

components, quiver u comma v generates the velocity vector plots in matlab. So, this is 

just a generic example, but you can use different types of graphical user interface. So, for 

contour plots in matlab, you can use a similar function called as contour. 
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Now, before winding up, let us come to some final remarks. Now, these remarks are 

important; I would expect that you would take some of these remarks in a light mood, 

but some of the remarks are not exactly in a light mood. When I was a student, I was 

studying in a class and this is a particular statement that one of the professors made to us 

– the quality of a simulation in CFD is inversely proportional to the amount of the colour 

in representing the same. Now, the reason is that these days we have many available 

softwares, where you can give say different types of inputs, just have a button click on 

certain things and you will generate excellent nice plots. Once you generate these 

excellent nice plots, then what you get out of these? You do not know whether you are 

getting the right solution or wrong solution or what, but plots are very colourful. Because 

these plots are very colourful, they are very much presentable; and, because they are very 

much presentable, you get tempted to present them in whatever presentations that you 

are going for. And, that is why CFD to many communities is known as colourful fluid 



dynamics; not computational fluid dynamics, because the results are filled up with 

coloured plots of contours and whatever. 

Sometimes it is it is also told as colour for directors, because in some companies, the 

directors may become very much fascinated; they may not look into the details of the 

CFD, because they do not have the time. So, they will look into the results. And, if you 

can impress your director, you know that you can get a lot of mileage in your company. 

So, it is it is also called as colour for directors. But, jokes apart, if you take it very 

seriously, many times we are not very much careful about the authenticity of the results 

once we get nice plots. And, this is something which is very deterring. One should be 

very careful about what? One should be very much careful about what is the physics that 

has gone into the CFD code. 

Now, once you considered the physics, one of the important considerations that comes is 

the boundary condition. Be sure about the boundary conditions before clicking 

entry/exit/wall in the GUI or inflow/outflow wall. This is very tempting, because what 

we see very commonly that you click for example, outflow boundary condition where it 

is not exactly outflow. Let us give an example. Let us say you have a thermally fully 

developed flow. So, if you have thermally fully developed flow along x, then it is not del 

T del x equal to 0 at the outlet, but del theta del x equal to 0; where theta is T minus T 

wall by T bulk mean minus T wall. So, if you are solving for temperature, you will be 

most commonly tempted to click the outflow boundary condition, because it is available 

with the GUI. But, that will be totally wrong if you are implementing a thermally fully 

developed flow. You have to somehow implement del theta del x equal to 0. So, if you 

are solving for theta is a variable and then implementing the outflow boundary condition, 

fine; but, not if T as a variable. So, you have to be very careful whether the boundary 

condition that you are implementing is representing the right physics. 

Not only the boundary condition, in general, are you sure that your code implements the 

physics that you want? This is very important, because all problems do not have the 

same physics. Say you are interested to solve for a verified gas dynamics problem. So, if 

you are interested to solve a verified gas dynamics problem, then in that case, continuum 

equations may not be valid. And, in that case, maybe you may require molecular 

simulation or microscopic simulation; similar other types of simulations are there. Now, 

there you are forcefully trying to use the standard Navier-Stokes equation without any 



alteration in the boundary condition; and, you are expecting that your code will give you 

the correct result. That is not what you are going to look for. So, you must make sure that 

your code implements the physics that you want. That is very important. If you are 

unsure about that, first make sure that what are the governing equations; is it possible to 

cast those governing equations in a conservative form? If it is not possible to cast those 

governing equations in a conservative form, then this CFD code is not for that particular 

problem. 

Everything is not for everything. So, it is not that you have a CFD code, which you can 

use for solving any problem; it has to be a... So, CFD code fundamentally is what? A 

CFD code fundamentally is a PDE solver. So, it is a coupled PDE solver so to say. So, if 

the PDEs are possible to cast in a general conservative form, then only the CFD code is 

possible to be implemented for the particular problem that you are implementing. If you 

are having equations which do not fall into that category, simply do not use that code. 

Try to use the different code or develop a code or whatever, but do not use it. 

Most of the times, a casual – physics illiterate, but champion code user – so, these days 

there are many such people whom we see like even in research labs or in the companies, 

several places. There are people who can use the code very nicely, but he is not at all a 

person who is good in physics in solving such a problems. Most of the times, such an 

analyser will be part of garbage-in, garbage-out exercise, because such an analyser will 

not be careful about the physics; such an analyser will be careful only about how to just 

click the mouse button for giving some inputs and getting some outputs without knowing 

that what the code is doing. So, it is very important not always to write a code by 

yourself, but at least to know very thoroughly what the code does. So, what are the 

strong and weak points? 

So, if such a user gets physically wrong solutions, do not blame the code; it is your 

responsibility to make sure that you understand correctly the background that goes with 

the code. So, most of the times, when something has gone wrong, we blame the code. So, 

the code is a dumb individual; it is inanimate. So, it is very easy way to blame a code. 

You cannot blame an individual, but you can blame a code. So, for physically wrong 

solutions, do not blame the code; it is your responsibility to make sure that you 

understand correctly the background that goes with the code. 



Then, there are certain issues about meshing. See theoretically, we always learnt that a 

mesh refinement will always give a better solution. But, practically, a mesh refinement to 

an unlimited extent may not always yield a better solution. The reason is that when you 

go for mesh refinement, you are sometimes dealing with small numbers, because the 

grids sizes are small. And, those small numbers can interfere with some of the 

calculations. And so, those may interfere with round of errors and so on. So, a mesh 

refinement need not always yield a better solution; in theory, yes; in practice, may be / 

may not be. 

Now, the other thing is that when you have a solution, how do you validate it? CFD 

problems have benchmarks. So, there are some standard benchmark problems in the 

literature; you can validate your solution with the benchmark problems. Sometimes you 

validate your numerical solutions with experimental results. But, if a numerical solution 

exactly matches with experiments, there is something wrong with either the experiment 

or with the numerical solution. The reason is you cannot perfectly match an experimental 

condition, which is a reality with an idealized condition, where you do not know actually 

the boundary conditions; you say something isothermal that is not really isothermal. 

Then, you specify certain properties; you really do not know how those properties vary 

with temperature and other conditions. So, your reality experimental condition is not 

mimicked by the idealized modelling conditions. So, all in all, these are some of the 

practical remarks that we should keep in mind. It is very important to use a CFD code, 

but it is also important to keep in mind that what are the cautions, what are the important 

points that you should remember while implementing a CFD code. We stop here today 

with that. 

Thank you very much. 

 


