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In our previous lecture, we introduced the concept of the gradient search based 

techniques, and we tried to illustrate one of those methods with the help of an example. 

So, we will continue with that example. So, in the example, our objective was to solve 

the system of equation A x equal to b, where A is given by this matrix, and b is given by 

this vector. So, what we first did is, we first obtain f (x), which is half of x transpose A x 

minus b transpose x plus C. 
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And we plotted f in the x 1, x 2 plane, by setting C equal to 0, we satisfied that f will pass 

the curve representing f will pass through (0,0). And so, it represented an ellipse with 

semi major axis length root 3 by 2, and semi minor axis length root 3 by 4. Now, the 

method that we are going to describe on the basis of this example is known as steepest 

descent method. In this particular method, what we will try to do? We will try to move 

along the gradient of the function f, which represents the steepest rate of change or 

maximum rate of change of the function f, the direction of the maximum rate of change 

of the function f. 

We start with the initial guess, let us say this initial guess is x 1 0 equal to 0, and x 2 0 

equal to 0 as an example. Now, in the next step, what we will do? We will update this x. 

So, we will come up with a new x, we will start from the x 0 point, which is (0,0) move 

in a direction of gradient of f and stop somewhere, where the function is a minimum, and 

that will be the new iterate, that will be the new value of x. So, x 1, these are x 0; so, x 0 

means, the vector x 1 0 and x 2 0. Now, x 1, x 1 is a point in this plane, x 0 is another 

point, and the direction from x 0 to x 1 is along the gradient of f; gradient of f an r have 

the same direction, but of course, opposite sense, but it does not matter, because the 

direction is the same. 

So, we can say x 1 is equal to x 0 plus alpha 0 into r 0. What is r 0? R 0 is gradient of f at 

x 0 that is minus r 0. So, we have to find out. So, what it says? X 1 minus x 0 is a vector, 



which is oriented along r 0, and which has the magnitude, which is governed by the 

coefficient alpha 0. So, you have to find out, what is alpha 0? So, what does alpha 0 tell? 

What does r 0 tell? R 0 tells, what is the direction in which you are moving that is 

gradient of f at x 0; how much you are going to move along that direction that will be 

given by alpha 0. So, f of x 1 is half x 0 plus alpha 0 r 0 transpose A… minus b transpose 

x 0 plus alpha 0 r 0 plus C.  

For f to be minimum, you must have del f del alpha 0 equal to 0. So, let us differentiate 

this with respect to alpha 0. So, we have half of r 0 transpose A x 0 plus alpha 0 r 0 plus 

half of x 0 plus alpha 0 r 0 transpose A r 0 minus b transpose r 0 equal to 0. So, if you 

take alpha 0 common, here there are two terms, which contain each contains half of r 0 

transpose A r 0 combined with alpha 0. If you take alpha 0 common, it becomes r 0 

transpose A r 0 plus half r 0 transpose A x 0 plus half x 0 transpose A r 0 minus b 

transpose r 0 equal to 0. 
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Now, using a similar manipulation, what we have done earlier also; you can show x 0 

transpose A r 0 is equal to x 0 transpose A r 0 the transpose of that, because it is scalar, 

that is equal to A r 0 transpose into x 0 transpose transpose is equal to r 0 transpose A 

transpose x 0, and that is equal to r 0 transpose A x 0, because A transpose is equal to A, 

we are dealing with a symmetric matrix A transpose and A are the same. So, the second 

term and the third term combine together becomes r 0 transpose A x 0. And the final 



term b transpose r 0 is equal to b transpose r 0 transpose is equal to r 0 transpose b. So, if 

you combine all this, what you get is alpha 0 r 0 transpose A r 0 plus r 0 transpose A x 0 

minus b is equal to 0; what is A x 0 minus b that is equal to minus r 0, because A x 

minus b is r minus r. So, this is minus r 0 therefore, alpha 0 is r 0 transpose r 0 by r 0 

transpose A r 0. 

So, with this, we can say that the new x - x 1 is equal to x 0 plus alpha 0 r 0. So, you 

move up to certain x, and that is the new x - x 1, and then you change your direction. 

Similarly, when you go on calculating x 2, the subsequent x, your alpha 1 will be r 1 

transpose r 1 by r 1 transpose A r 1 and x 2 is equal to x 1 plus alpha 1 r 1. In this way, 

you go on having new choices of the point, till you come to the solution, so till you hit 

the bull’s eye.  So, in the first step, you move along the direction r 0; in the second step 

you move along the direction r 1; interestingly, there is a very important relationship 

between these two subsequent directions, direction of r 0 and direction of r 1. 
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To understand that, let us calculate r 0 transpose r 1. So, r 0 transpose r 1 is b minus A x 

1, because r is b minus A x. So, r 1 is b minus A x 1; in place of x 1, we can write x 0 

plus alpha 0 r 0. So, r 0 transpose b minus A x 0 minus alpha 0 A r 0; what is b minus A 

x 0 that is equal to r 0. So, this is equal to r 0 transpose r 0 minus alpha 0 r 0 transpose A 

r 0; remember alpha 0 is the scalar. So, by using this relationship, alpha 0 equal to r 0 



transpose r 0 by r 0 transpose A r 0, this becomes equal to 0. So, r 0 transpose r 0 equal 

to alpha 0 into r 0 transpose A r 0. 

So, what does it show? R 0 transpose r 1 is 0 that means, if you multiply the elements of 

r 0 with the corresponding elements of r 1, both are vectors, you get the result 0; that 

means, just like physical vectors, it it is like a extension of the dot product, it is a sort of 

a inner product,, but if you consider it from simple conceptual considerations, it is just 

like a dot product, where you have that elements of r 0 multiplied with the corresponding 

elements of r 1, and the result is 0. So, that means, r 0 and r 1 are orthogonal to each 

other.. 
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So, what we learn from this? First we moved along the direction of r 0, next we moved 

along the direction of r 1, which is x 2 minus x 1, and that direction will be perpendicular 

to this direction. In this way, we will be moving in mutually perpendicular directions in 

several steps may be depending on how many steps necessary, till you reach the solution. 

So, to understand how do we reach the solution using this steepest descent method, let us 

work out 1 or 2 steps may be, and the remaining steps you can complete. So, first step, 

what you have to calculate? You have to calculate alpha 0 that means, you have to 

calculate r 0 and r 0 transpose r 0 into and r 0 transpose into A into r 0. So, your x 0 is 

known, that is 0 0. So, what is r 0? B minus A x 0. So, that is equal to 1 1 minus… That 

is 1 1. So, r 0 transpose r 0 is equal to 1 1 into 1 1. So, that is 2. Then r 0 transpose A r 0; 



A is 1 0 0 2 into r 0… So, 1 then it becomes 3. So, what is alpha 0? R 0 transpose r 0 by r 

0 transpose A r 0. So, that is 2 by 3. What is x 1 - is equal to x 0 plus alpha 0 r 0, that is 0 

0 plus 2 by 3 into r 0 is 1 1, so 2 by 3 2 by 3. 

Then you can calculate, what would be the next calculation? What is r 1? So, r 1 is b 

minus A x 1; so, 1 1 minus 1 0 0 2 into two-third two-third. Let us not go into again these 

lengthy calculations, because we have by this time understood that what are the 

sequential steps? So, once you calculate r 1, you can calculate alpha 1, and then you can 

calculate x 2 by using this formula. In this way, you can calculate then alpha 2 and then x 

3 and so on; till you find that you reach the solution; that means, when do you find that 

you reached the solution, your residual becomes 0, that is when you reach the solution. 

So, as we can see through this example that it requires a substantial number of steps, 

even for such a simple equation, it requires a substantial number of steps to start with the 

initial guess point, and to come to the final solution. This may be further improved, and 

improvement of this aspect is considered in a method, which is also a a sub class of the 

gradient search based methods that is known as conjugant gradient method. So, let us 

look into the conjugate gradient method; and we will follow the method by using the 

same example that we have considered so far. 
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So, conjugate gradient method. So, in this method, what is done? First you calculate up 

to x 1 that is fine; then you try to make a modification, what modification? See, what we 



do? We first calculate x 1, and then we see that it requires a lengthy number of steps to 

reach the final solution. So, then somebody, who is very greedy wants to get a solution in 

one step that is, wants to get to the solution from the point x 1 directly. So, let us say this 

point is called as x C, which is the centre of this ellipse, which is a solution; reaching this 

point means, reaching the solution. So, in one step, if you want to move from x 1 to x C, 

so what you do is you do not go through all these steps in one step, you want to reach 

this solution; then what is the direction in which you move? You move in a direction, 

which is directed from x 1 to x C. 

So, you move along a direction given by say t 1, which is a new variable, which is K into 

x C minus x 1, where K is just a scalar, because how much you have to move is 

something which has to be determined, but at least the direction is known from x 1 to x 

C. So, position vector of the second point minus position vector of the first point, 

because you introduce a new variable p 1, and you intend to move along that direction, 

you also have something which is p 0, and which you call same as r 0. So, p 0 is same as 

r 0, because for the initial direction, you do not have any difference in terms of the 

direction, in which you move for the steepest descent method, but from the subsequent 

steps, you try to change your direction. So, you have p 0 equal to r 0, p 1 equal to K into 

x C minus x 1. 

Now, you can write a p 1 is equal to K Ax C minus A x 1; why you write it in this way is 

because you can then write it in terms of the residual. What is Ax C? Ax C equal to b, 

because x C is the correct solution. So, Ax C minus A x 1 is b minus A x 1, which is 

equal to r 1. So, this is K r 1. You know that r 0 transpose r 1 is equal to 0, which we 

have just proved. So, if you multiply both sides by r 0 transpose, then it will become 0. 

So, r 0 transpose Ap 1 is equal Kr 0 transpose r 1, which is equal to 0; and r 0 is nothing 

but equal to p 0. So, we can write p 0 transpose A p 1 that is equal to 0. So, p 0 transpose 

p 1 is not 0, but p 0 transpose A p 1 is 0. So, this is in linear algebra terminology is called 

as p 0 is A orthogonal to p 1; just a name. 

Now, despite having a relationship between p 0 and p 1, this alone does not give you any 

clue of what is p 1, because that is essentially, your interest, that what is that next 

direction in which you are interested to move; once you reach x 1, from x 1 in what 

direction you are interested to move. So, you have to know, what is p 1? And at the most, 

what you have in your hand? You have r 1 as one direction, and p 0 as another direction, 



which is same as r 0. So, you form p 1 as a linear combination of r 0 and r 1, and try to 

satisfy this relationship. So, you form p 1 as r 1 minus beta 1 p 0. So, the whole purpose 

is that you are going to have a new direction; this new direction you can form by taking 

help of some known direction; known directions till now r 0 and r 1; r 0 is same as p 0. 

So, you make it as a linear combination of these two, and this is known as Grame Scmidt 

conjecture. So, then p 0 transpose A into r 1 minus beta 1 p 0 is equal to 0. So, you have 

beta 1 as p 0 transpose A r 1 by p 0 transpose A p 0. 

So, if you know beta 1, then using beta 1, you can find out what is p 1, but the next thing 

is that you know that therefore, the direction in which you want to move, that is p 1, but 

how much that the next, you have to find out. 
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So, next you have to find out that what is the next point x 2? X 2 is equal to x 1 plus 

alpha 1 into p 1. See, here lies the difference between the steepest descent and the 

conjugate gradient method. In the steepest descent method, it was alpha 1 r 1. So, you 

moved along the direction of r 1. Now, you are not moving the direction r 1, but a 

different direction p 1 with a hope of reaching the point, the target, the solution directly 

in one step. So, the question will remain that what is this alpha 1? Again the basic 

principle is the same; alpha 1 should be such that f should be a minimum. 

So, f at x 2 is equal to half of x 1 plus alpha 1 p 1 transpose A x 1 plus alpha 1 p 1 minus 

b transpose x 1 plus alpha 1 p 1 plus C. Just substitute in place of x as x 2, which is x 1 



plus alpha 1 p 1. So, for f to be minimum, del f del x 2 should be equal to sorry del f del 

alpha 1 could be equal to 0. So, what we get from here? Half of p 1 transpose A x 1 plus 

alpha 1 p 1 plus half of x 1 plus alpha 1 p 1 transpose A p 1 minus b transpose p 1 equal 

to 0. 

So, we can now simplify, you can see that first you have with alpha 1 p 1 transpose A p 

1, half of that; and then again another p 1 transpose A p 1, half of that. So, alpha 1 into p 

1 transpose A p 1 plus half p 1 transpose A x 1 plus half x 1 transpose A p 1 minus b 

transpose p 1 equal to 0. So, alpha 1 p 1 transpose A p 1 plus… Now, you can reorganize 

these terms as we did earlier, you can take a transpose of this. So, if you take a transpose 

of this, it will become p 1 transpose A transpose x 1, and A transpose is same as A. So, 

plus this will become therefore, half p 1 transpose A x 1, this another p 1 transpose A x 

1. So, total is p 1 transpose A x 1 from this term, and the last term b transpose p 1 is 

same as b transpose p 1 transpose. So, p 1 transpose b. So, p 1 transpose A x 1 minus b 

that is equal to 0, A x 1 minus b is minus r 1. So, the formula for alpha 1 that we get here 

is p 1 transpose r 1 by p 1 transpose A p 1. How to implement this? In practice, let us 

follow the previous example, using which we will try to illustrate. 
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So, the same example, where we have A is equal to 1 0 0 2, and b is equal to 1 1 you 

have to find out the value of x. So, remember that the first few steps of the conjugate 

gradient method are same as the first few steps of the steepest descent method, up to 



which steps first calculation of r 0, which is already there; then alpha 0, and x 1 is equal 

to x 0 into alpha 0 r 0, and r 1 b minus A x 1. So, we will require r 1 and r 0, therefore, 

let us complete the calculation for r 1 before we proceed further. So, r 1 is b minus A x 1, 

so, 1 1 minus 2 3 and 4 3. So, what will be r 1 one-third and minus one-third. 

So, up to these steps, we also had to calculate in the steepest descent method. Now, in the 

conjugant gradient method, the subsequent steps will require what? Next you will require 

the calculation of p 1; for that you need to calculate beta 1. So, let us calculate, what is 

beta 1 remember that r 0 and p 0 are the same. So, r 0 this is equal to p 0. 
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So, next let us calculate, what is beta 1? To do that, what we need to calculate? 

Numerator p 0 transpose A r 1 p 0 transpose A r 1, this is equal to 1 1, this is p 0 A r 1 

one-third minus one-third, this is one-third minus two-third. So, this becomes one-third 

minus two-third minus one-third. Then denominator in the formula for beta 1 is p 0 

transpose A p 0. So, p 0 transpose A p 0, we have already calculated it in the steepest 

descent method, because p 0 transpose p 0, A p 0 is same as r 0 transpose A r 0, because 

p 0 and r 0 are the same. So, let us not just waste any time for calculating it, we have 

already calculated it. So, this is same as r 0 transpose A r 0; so, for that we have the 

result already as 3. So, beta 1 is equal to p 0 transpose A r 1 by p 0 transpose A p 0 is 

equal to minus 1 by 9. 



So, that will lead to the calculation of p 1; p 1 is equal to r 1 minus beta 1 p 0. So, r 1 is 

one-third minus one-third minus beta 1 plus 1 by 9, p 0 is same as r 0, that is 1 1. So, this 

becomes one-third plus 1 by 9, so 3 plus 1 - 4 by 9, and minus one-third plus 1 by 9 

minus 3 plus 1 minus 2 by 9. So, once you have calculated p 1, what what you next 

should calculate alpha 1. So, for calculation of alpha 1, you require in the numerator, so 

this is the formula for alpha 1, this is the formula for alpha 1; in this particular formula, 

you require p 1 transpose r 1, and p 1 transpose A p 1, so p 1 transpose r 1 is equal to… 

P 1 transpose r 1; r 1 is one-third minus one-third. So, 4 by 9 into 1 by 3, that is 4 by 2 

into 7 minus then sorry plus 2 by 9 into 1 by 3 plus 2 by 27, that is 6 by 27, that is 2 by 9; 

p 1 transpose A p 1, so 4 by 9 minus 2 by 9 A - 1 0 0 2 and p - 1 4 by 9 minus 2 by 9. 

This will become 4 by 9 and minus 4 by 9, 4 into 4 - 16 by 81 plus 4 into 2 - 8 by 81 24 

by 81 8 by 27. So, next we can calculate, what is alpha 1? 
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Alpha 1 is p 1 transpose r 1 by p 1 transpose A p 1; so 2 by 9 by 8 by 27, so 2 by 9 into 

27 by 8, that is equal to 3 by 4. So, x 2 is x 1 plus alpha 1 p 1; what was x 1? X 1 was 

two-third and third plus alpha 1, that is three-fourth into p 1 4 by 9 minus 2 by 9. So, that 

is two-third plus 3 by 4 into 4 by 9 that is the first point. So, two-third plus one-third that 

is one and the other point is two-third plus 3 by 4 into minus 2 by 9. 



There is some 2 by 3 minus 1 by 6 that is equal to half right. So, you can see that in one 

step, it has reached the solution. So, the conjugate gradient method is supposed to work 

with a greater speed for reaching the solution speed means, less number of steps that is 

what we call as speed, it is not the computational of speed. Now, we have seen the 

gradient search based method that is the steepest descent methods and the conjugate 

gradient method. Now, let us try to assess the applicabilities of these methods. So, let us 

work out one or two examples to see how they work, how efficiently they work and so 

on. 
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So, let us consider a problem; given a matrix A, the Eigen values of which are negative. 

An analyzer tries to apply the gradient search based methods for solving the system A x 

equal to b. How do you assess the success of that attempt the chance of success in that 

attempt? 

So, in many cases, people try to use a method; in many cases, people are unsuccessful, 

because they have implemented the method wrongly; in some other cases, they are 

unsuccessful, because the method is wrong for that particular situation. So, when you say 

the question, how do you assess the chance of success in that attempt, you have to 

assume that, otherwise if he or she implements the method, there is nothing wrong with 

the implementation; of course, otherwise you can say that, I assess that there is no chance 

of success in the attempt, because the person is very dull or inefficient. So, it is not like 



that. So, you have to assume that the person is efficient in terms of implementing the 

method as it is, but even then whether you expect success or not, that is what you have to 

predict. 

So, the clue should come from this particular statement, the Eigen values of which are 

negative. So, what is the consequence of a coefficient matrix, which is having negative 

Eigen values? So, you have A x equal to b, and the corresponding Eigen value if you 

have lambda for the matrix A, then you have A x equal to lambda x. Now, for the 

gradient search based methods, you have to recall that what are the basic conditions that 

need to be satisfied for the method to be applicable; one is a has to be symmetric, another 

a has to be positive definite, because we have shown that the symmetric condition is 

good enough to have the gradient of the function f equal to 0 corresponding to A x equal 

to b,, but that does not ensure a minimization; a minimization on the top of that is 

ensured by a positive definiteness of A over and above the symmetry requirement. So, 

we have to ensure that A is positive definite; how do we ensure? If you have an arbitrary 

vector x, then x transpose A x should be greater than 0. 

Now, if you have x transpose A x here, that is nothing but lambda into x transpose x, 

what is x transpose x? It is positive or negative? It is always positive, because an element 

of x is multiplied by the corresponding element of x only. So, x transpose x is what? You 

have x 1, x 2 in this way x n, that is multiplied by x 1, x 2 in this way x n. So, it is 

lambda into x 1 square plus x 2 square, it is just like making a dot product. Now, this will 

be negative here, because this is positive, but lambda is negative; it is negative. Even if 

one Eigen value is negative that can make this x corresponding x transpose A x as 

negative. So, that means, it is not, A is not positive definite, which implies that the 

gradient search based method will not work. 

Fortunately in computational mechanics problems, most of the coefficient matrices that 

you derived from the discretization of a physical problem, many of those will be 

symmetric and positive definite; and therefore, you can use this method, but you have to 

keep in mind that that is not an assurance you have to first assess whether the coefficient 

matrix is symmetric and positive definite. Symmetry assurance is obvious; you can just 

directly observe and find out whether it is symmetric or not, but for assessing the 

positive definiteness, you have to be a bit more careful. 
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Let us consider another problem… Compare the steepest descent and the conjugate 

gradient method with regard to the solution of… This. So, let us find out what is f (x)? 

Half of x transpose A x minus b transpose x plus C. So, half of x 1 x 2 into 1 0 0 1 x 1 x 

2 minus b transpose x plus C; this minus x 1 plus x 2 plus C, so half of x 1 square plus x 

2 square minus x 1 plus x 2 plus C. To have a visualization of the method, we will try to 

plot f equal to 0 in the x 1, x 2 plane as we have done in the previous, in one of the 

previous examples. 
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So, to do that, we will write half of x 1 square minus 2 into x 1 plus 1 plus half of x 2 

square minus 2 into x 2 plus 1 plus C. 
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So, f is equal to half into… There is one adjustment of minus 2 plus C minus 2, so half of 

x 1. So, half plus half 1 sorry yes minus 1, so half of x 1 minus 1 whole square plus half 

of x 2 minus 1 whole square plus C minus 1. So, if you want to have if f equal to 0 

passes through (0,0) which is your initial starting point then you have 1 square plus 1 

square sorry half into 1 square plus 1 square plus c minus 1 is equal to 0 that means, C 

equal to 0. So, then you have half of x 1 minus 1 whole square plus half of x 2 minus 1 

whole square is equal to 1. So, x 1 minus 1 whole square plus x 2 minus 1 whole square 

is equal to 2 right. So, it represents what? Represents a circle in the x 1, x 2 plane; circle 

has centre of (1,1). So, this is (1,1) and radius of root 2; it is very difficult to draw a 

circle, every time you try to draw a circle, it becomes an ellipse may be if you try to draw 

an ellipse, it becomes a circle. 

But let us try to understand the basic essence out of it. So, you have the starting point 

(0,0), this is the bull’s eye that you have to hit; you know, this is the solution. So, in the 

steepest descent method, you are moving along the direction of the gradient of n, which 

is what, which is normal to the curve. So, you move along the direction. So you will 

definitely hit the centre, because in one step, you are able to reach your goal; the steepest 

descent and the conjugate gradient method for this case will be the identical. So, when 



you say, the compare the steepest descent and the conjugate gradient method with regard 

to the solution of this; they are absolutely identical, because in this special case you are 

lucky enough to have it as a circle, where the normal direction and the radial direction 

are the same. So, that you reach the center in (( )). So, this is a very special example, a 

very simple example, where you can say that in identical steps, you can reach the 

solution for both the methods, without working out the further details. 

So, we stop our discussion on the solution of the system of the algebraic equations here. 

So, so far we have studied the diffusion type of problems, their discretization, and 

solution of the discretized algebraic equation. So, our next agenda will be to go one step 

forward, and try to see how we discretize the convection diffusion problems, that we will 

do in the next class. Thank you. 

 


