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We will divide today’s lecture into two parts. In the first part, we will continue with the 

consideration of stability of hyperbolic equations, and in the second part we will discuss 

about some of the questions and answers which we had as a part of our mid-semester 

assessment. 
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So, to consider the first part, we have till now considered a first order hyperbolic 

equation. Now, let us consider the second order hyperbolic equation, as we may recall 

the wave equation belongs to that category. So, you have… So, let us say that this is the 

prototype equation, and we want to study the corresponding discretization and its 

stability. So, this discretization can be done in many ways, we will consider one 

example; that we discretize it by CTCS scheme. Because we have examined through the 

first order equation that CTCS scheme gives a good stability behavior. So, we want to 



use it for the second order equation also. If we discretize it, that means it time will be 

central difference space also will be central difference. So, what will be the left hand 

side, u i n plus 1 i plus u i n minus 1 i minus 2 u i n divided by delta t square. Then this 

one u i plus 1 n plus u i minus 1 n minus 2 U i n by delta x square. 

So, we can write U i n plus 1 plus U i n minus 1 minus 2 U i n is equal to courant number 

square U i plus 1 n plus U i minus 1n minus 2 U i n, where courant number is equal to C 

delta t by delta x. Let us write the expression of the corresponding error, so epsilon i n 

plus 1 plus epsilon i n minus 1 minus 2 epsilon i n is equal to courant number square 

epsilon i plus 1 n plus epsilon i minus 1 n minus 2 epsilon i n.  

Now, as you recall we substitute epsilon (x,t) is equal to A e to the power a t into e to the 

power j k x, where j is square root of minus 1. It needs to be mentioned, perhaps I did not 

mentioned it earlier that the stability analysis that we are doing is due to the contributions 

of von Neumann, so this is known as von Neumann stability analysis. And it is 

essentially applied for linear problems. Now if we substitute this epsilon in the 

expression for the error, what we get out of these; e to the power a t plus delta t into e to 

the power j k x plus e to the power a t minus delta t into e to the power j k x minus 2 e to 

the power a t e to the power j k x that is the left hand side, that is equal to the right hand 

side courant number square into e to the power a t e to the power j k x plus delta x plus e 

to the power a t e to the power j k x minus delta x minus 2 e to the power a t e to the 

power j k x. We can now find out the amplification factor, by dividing both sides by e to 

the power a t into e to the power j k x.  
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So we will do that now, the amplification factor is equal to e to the power a delta t. So 

we have, amplification factor plus 1 by amplification factor minus 2 is equal to C o 

square into e to the power j k delta x plus e to the power minus j k delta x minus 2. So 

this, from this equation we need to solve for the amplification factor. We consider k into 

delta x equal to theta. So, this is e to the power j theta plus e to the power minus j theta. 

So, cos theta plus j sin theta plus cos theta minus j sin theta. So, 2 cos theta is the 

corresponding expression. So, we have amplification factor square minus amplification 

factor C naught square into 2 into cos theta minus 1 minus two equal to 0. 

(( )) 

Minus two into (( )) So, 2 into A m square is there one, then there is one minus 2 A m 

plus 1 equal to 0. You can use cos theta minus 1, 1 minus cos theta is 2 sin square theta 

by 2, so minus 2 sin square theta by 2. So, A m square minus 2 A m into 1 minus 2 C 0 

square sin square theta by 2 plus 1 equal to 0 . So, A m is minus of this one minus b. So, 

2 into 1 minus 2 C naught square sin square theta by 2 plus minus root over of b square. 

So, we can cancel 2 from both numerator and denominator, this whole square. Now this 

clearly depending on the value of C naught, could assume real roots as well as imaginary 

roots. So, first of all if you consider the real roots you can see that, no matter whether the 

roots are real or imaginary. what is the product of the roots of this quadratic equation 



one. So if the two roots are real, if one of the roots is less than one then other will be 

greater than one.  

So, that will give rise to instability. Therefore, the possibility of imaginary root of this 

one, needs to be assessed very carefully for stability. The real root that we have 

considered that, if one gives less than one amplification factor; the other will give greater 

than one amplification factor, but let us investigate the complex roots. That is the 

imaginary part of this solution more carefully. So imaginary root, if 1 minus 2 C naught 

square sin square theta by 2 whole square minus 1 less than 0. So, 1 minus 2 C naught 

square sin square theta by 2 less than 1, whole square less than 1. That means, 1 minus 2 

C naught square sin square theta by 2, is magnitude should be such that it should lie 

between minus 1 and plus 1. So, that is square is less than 1.  
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So, let us consider the two limits; left hand limit, minus 1 less than 1 minus 2 C naught 

square sin square theta by 2 and right hand limit, 1 minus 2 C naught square sin square 

theta by 2 less than 1. So, the right hand limit gives C naught square sin square theta by 

2; greater than 0, which is trivially true, because C naught square is greater than 0, and 

sin square theta by two also greater than 0. So, the left hand limit needs to be examined 

more carefully. So, the left hand limit says 2 C naught square sin square theta by 2 less 

than 2, so C naught square less than 1 by sin square theta by 2. So, it should be less than 

1, for a conservative estimate. That means, C naught should be less than 1, remember C 



naught is positive. So, what we can see here is that we get back the CFL criteria, 

Courant-Friedrichs-Lewy criteria for stability for the CTCS scheme for second order 

hyperbolic equation. 

So, we will not illustrate this stability analysis any more, more and more we do it. It will 

become more and more monotonic, because it is basically the same exercise just a bit of 

algebra, different for different types of schemes. So, what message we have got from this 

analysis is that, we give a particular perturbation and see whether the perturbation 

amplifies or dies down. It depends on the behavior of the exponential term, from that we 

can get an amplification factor. And we essentially tend to adjust that, whether there are 

conditions corresponding to which the amplification factor has magnitude less than 1 and 

that condition ensures the condition for stability.  

So, as the next agenda for today’s lecture, what we will do is we will start looking into 

the questions of the mid-semester examination. First, I will read out the questions, 

describe the questions, and then we will try to look into the solutions of this questions. 

We will try to see whatever we can covered in today’s lecture or and the remaining we 

will continue in the next lecture. So, the mid-semester questions essentially are from the 

portions that we have covered mainly with the variation formulation to begin with and 

then the fundamental considerations of the finite difference, finite elements and the finite 

volume method. 
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So, we will first consider one question from the variation formulation. So, the question 

number one for the mid-semester assessment. We consider the following differential 

equation. This is the differential equation, where a, b, c are known functions of x, so a, b, 

c are known functions of x, and a, b, c are greater than equal to 0 for all x. The domain of 

definition is x between x 1 to x 2. So, let us write down the questions in the right hand 

side, we will solve the corresponding questions in the left hand side. The first part of the 

question is, develop the variation formulation for the above differential equation; for this 

differential equation in the form find u such that A(u, v) is equal to L(v) for all v. That is 

number one, number two is identify the function spaces in which u and v should lie, and 

the corresponding, essential as well as natural boundary conditions. Number three show 

that A is symmetric and positive definite. Number four, formulate the minimization 

problem corresponding to the above variation formulation.  
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So, let us try to solve this part of these questions one by one. So, first to develop a 

variation formulation, what we need to do? 

(( )) 

We multiply this by V and then integrate with respect to x, so integral of (( )). So, that is 

the first step, next we will try to reduce the order of derivatives by integration by parts. 

So that, reduce the order of derivatives of u and that will increase the order of derivative 

of V as such it is like the total order of derivative as such is conserved. So, if you reduce 



the order of derivative of u that should be compensated by increase of derivative of the 

order of v, order of derivative for v. So, let us do that. So, v is the first function and this 

is the second function for all the terms. So, first function into integral of the second. I am 

writing the boundary term separately, because we will need this for specification of the 

boundary conditions, minus integral of derivative of first that is d v dx into integral of the 

second. So d dx of A d 2 u dx 2 into d v d x, that is for the first term. For the second term 

again first function into integral of the second minus integral of; so minus will become 

plus, integral of derivative of first into integral of the second. So, b d u dx into d v dx d x 

1 to 2. We have to execute the integration by parts once more keeping this term in view. 

So, let us do that. 

Let us first write the boundary terms v, this one minus now this will be the first function 

and this will be the second function. So, first function into integral of the second minus 

integral of the derivative of first into integral of the second, then there is a boundary term 

and the remaining terms as they were earlier. So, this we can write in the form that we 

desire, A (u, v) equal to L( v).  
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So, this is of the form A(u, v) equal to L( v), where what is A( u, v) is equal to a d 2 u dx 

2 d 2 v dx 2 dx plus b d u dx d v dx d x plus c u v d x, and what is L(v) integral f(v) d x, 

and then the boundary terms taken in the other side. So, this minus, this is the variation 



formulation where we have written it in the form A(u,v) equal to L(v); for all v. So, that 

is the solution to the first part of the question. 

What is the second part of the question? Identify the functions spaces in which u and v 

should lie, and the corresponding essential and natural boundary conditions. So you can 

see here, that in this formulation you require the first order derivative and the second 

order derivative to be the important order derivatives. These two are the two important 

order derivatives. So, you have d u dx square integral from x 1 to x 2 that should be less 

than infinity as well as the second order derivative less than infinity. This is true for both 

u and v. So, the first order derivative of u, as well as the first order derivative of v should 

be square integral. The second order derivative of u as well as the second order 

derivative of v should be square integral, because these are the two derivatives which 

appear in the corresponding variation formulation. So, this implies that it will belong to 

H 1 space and this will imply that it will belong to H 2 space. So, these are the function 

spaces in which, you expect these to lie. 

Then, what are the corresponding essential and natural boundary conditions. So, for that 

let us look into the boundary terms. So, possible boundary conditions. Let us make a 

table; essential and the corresponding natural. There are three boundary terms. So, the 

boundary condition should come from three possibilities. First we consider this term. So, 

from this term, what is the corresponding essential boundary condition? See, v is the 

variation in u, so v is delta u. So, v is to be taken care of by specifying u. So, if u is 

specified then variation of u is 0 or delta u is o. So, essential is u specified. So, remember 

essential variation essential boundary condition is the specified value on the variable, the 

corresponding variation of which appears in the boundary term. So, delta u is equal to v 

therefore, u specified is the corresponding essential boundary condition and what is the 

natural boundary condition. 

(( )) 

The remaining what is there in the boundary term. So, d dx of a d 2 u dx 2 specified. 

Remember that either of this may be specified, but not both. But when we say what are 

the possible boundary conditions, we have to identify all possibilities. So, this one pair 

next let us considers this particular pair. So, in this particular pair we have d v dx and v is 

delta u. So, d u dx specified and what is the corresponding natural boundary condition? a 



d 2 dx 2 specified. Then we consider the third boundary term, in the third boundary term 

you again have v, v is delta u; that means, u is specified and the corresponding natural 

boundary condition b d u dx specified. So, this could be the possible specifications of the 

boundary terms.  

Then, the third part of the question which is pretty straightforward, show that A is 

symmetric and positive definite. So, we can see that if we interchange u and v in the 

expression for capital A it remains the same. So, A u comma v is equal to a v comma u; 

that means, it is symmetric. And how to test the positive definiteness, what is A(V,V). 

So, this is the expression for A(v, v), and if you look into the given condition small a 

small b small c are all greater than equal to 0 for all x. So, a small a small b small C are 

greater than equal to 0 and there multipliers are also greater than equal to 0. So, we can 

see that A(v, v) is greater than equal to zero. So, it shows that it is positive definite. 

Then the final part, part four formulate the minimization problem that is m problem 

corresponding to this variation formulation. So, the m problem will be what, minimize pi 

is equal to half A(u, u) minus L(u). So, half integral of x 1 to x 2 a d 2 u dx 2 whole 

square dx plus b d u dx whole square dx plus c u square dx minus L( u). So, minus 

integral of f (u) dx plus some boundary terms. I am not writing it again anymore, just it 

should be L(u), in place of v you replace it with u. So, minimization of this problem, 

because it is symmetric as well as positive definite you can formulate and m problem 

from the v problem. So, that completes the discussion of the answer to the first question. 
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Now, let us consider the second part of the first question or a different question. Again 

let us write the question in the right hand side. Starting from the fundamental principles, 

derive whether the following systems of PDE s; that is partial differential equations del u 

del x is equal to del v del y and del u del y is equal to v, where u and v are two dependent 

variables is parabolic, elliptic or hyperbolic. Most important is do not use any formula on 

classification of PDE s. So, you have derive it from the first principles. So let us try to 

answer this question. So, there are two variables u and v of course, you can deal with two 

variables simultaneously. But it becomes much easier if you eliminate one of the 

variables.  
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So, let us say you eliminate v. So you have, this one and the second equation del u del y 

equal to v. So, if you differentiate this with respect to y. Now if you equate the first 

equation with the final one that we obtain, you will get del u del x is equal to del 2 u del 

y 2. So, it is the nature of this particular equation that we have to determine. To do that, 

what we can do is we can use short hand symbols like u x equal to del u del x u y is equal 

to del u del y and so on. Similarly second order derivatives like mixed partial derivatives 

and so on. So, we can write what is d u x, because these are functions of x and y. So, by 

shorthand notation, this is u x x dx plus u x y dy. Similarly what is d u y? So, u y x dx 

plus u y y d y; for continuity in the second order partial derivative u y x is same as u x y, 

and what is the given equation. Given equation is u y y minus u x equal to 0. So, these 

are the three equations that we get, and we can arrange this in a matrix form.  
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So, if we consider this as equation number 1 then this as 2 and this as 3, from equation 

one we have there is no u x x. So, u x x into 0 plus u x y into 0 plus u y y is equal to u x. 

For the second equation, u x x into dx plus u x y into dy then there is no u y y is equal to 

d u x. From the third equation, there is no u x x u x y into dx plus u y y into dy is equal to 

d u y. For getting the characteristics of the equation, we need to get the characteristics of 

the equation, because the characteristics of the equation will essentially decide or the 

number of real characteristics will essentially decide whether it is parabolic, elliptic or 

hyperbolic. This is a second order PDE of known standard form. So, we know that across 

the characteristics, there may be discontinuities in u x x u x y and u y y. To 

accommodate that, you must have determinant of the coefficient matrix, that must be 

equal to 0. So, determinant of this one is equal to 0 that essentially implies that dx equal 

to 0. So, x is some constant. So, that is one real characteristic, which implies that it is a 

parabolic partial differential equation.  
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Then let us consider the next question, finite volume discretization equation for a scalar 

variable phi is obtained as minus 5 phi p is equal to minus 3 phi E minus 2 phi w plus 5. 

Question is, is the above discretization expected to yield a physically unrealistic 

solution? Justify with reasoning. So, a key towards understanding this particular question 

is that we have only limited information on the nature of the equation which is 

discretized, and we should assess it on that limited information only. See, it is not told 

whether this is discretized on the basis of one-dimensional steady state heat conduction 

with whatever. So, with constant property, variable property this that nothing about the 

physics of the background information based on which this equation is derived is told to 

us.  

So, but we can understand that at least it is a steady state problem, it is a one-dimensional 

problem. That much we can understand out of it, and there is some source or sink. Now 

to assess, whether it is expected to yield a physically correct solution or not, we have to 

consider that what are the basic rules that are pertinent to this discretization equation. 

Out of the basic rules that we consider, one of the most important basic rules that we can 

use regardless of the background physical information is that all coefficients must be of 

the same sign.  
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So, here the you can write this equation in the form a p phi p is equal to a E phi E plus a 

w phi w plus b, where a p is minus 5, a E is minus 3, a w is minus 2. See, do not try to 

assess this equation on the basis of whether a p is equal to a E plus a w, because that 

particular consideration is valid only for, a special case of a linear equation with no 

source term. So, do not try to assess it on the basis of that here coincidentally it happens 

fine, but it has nothing to do with the assessment. I am telling this, because that is one of 

the temptations that you might have to assess it on the basis of such requirements. So, 

you just assess it on the basis of the fact that these are the coefficients, these coefficients 

all have same sign. Remember b is not a coefficient. So, do not try to assess it on the 

basis of sign of b. I mean, these are common mistakes that students make. That is why I 

am iterating this. So, b is not a coefficient are the coefficient and all these all the 

coefficients are having the same sign since all the coefficients are of the same sign, it is a 

very simple question. Do not try to over assess the complication of the question. It is not 

a overly complicated question. It can be the simplest question possible, but you can of 

course attempt to complicate it by looking into the corresponding physics from which it 

would have perhaps evolved, and then several other consequences fluxes at control 

volume phases and so on. 

So let us not go into that; let us always try to learn a very simple obvious thing. Take a 

simple thing in a simple manner. Do not try to complicate any simple thing. So here the 

most simple consideration is, you have all coefficients of the same sign, you could have 



perhaps written it as a p equal to 5, a e equal to 3, and a w equal to 2 then b would have 

been minus 5. So it is not, it does not matter whether it is all coefficients are positive or 

negative, all coefficients are of the same sign to get a physically consistent solution. 

Therefore, from the phase value it is expected to yield a physically realistic solution, not 

an unrealistic one; that is the answer to this question. So, we will stop here today, in the 

next lecture, we will continue with the remaining question of the mid-semester 

examination. And after that is over, we will take up the discretization of two-dimensional 

problems. Still now we have considered the discretization of one-dimensional problems, 

We will take up the two-dimensional problems in the next class. Thank you.  


