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In our previous lecture, we were discussing about the finite volume discretisation of 

unsteady state diffusion problems. And we will take it up from there, if you relook into 

the derivations, you will find that we could derive the governing differential equation or 

rather, we could derive the discretized equation from the governing differential equation 

in a convenient form a p T p equal to a e T e plus a w T w plus a p naught T p naught 

plus b, where in the unsteady state problem, you have this additional neighboring term a 

p naught which takes care of the time neighbor.  

Now, as we have seen that this coefficients of the discretized equations, they cannot have 

any arbitrary sign. We have seems four basic rules, and one of those rules is that all the 

coefficients must be of the same sign. Now, with different choices of the parameter f; if 

you recall that f equal to 0 was fully explicit scheme, f equal to 1 fully implicit scheme, 

and f equal to point 5, scant Nicholson’s scheme. So, we will consider some limiting 



cases like f equal to 0 and f equal to 1 to begin with of course, we can test the case of f 

equal to 0 point 5 also, and see whether those cases are giving rise to all coefficients of 

same sign.  

First look at the coefficients a E, aw, a p. You can see, that f is a positive fraction; k e is a 

thermal conductivity which is positive; delta x is positive. So, a E is positive similarly a 

w is positive; a p is positive, but you cannot tell anything about a p naught, until and 

unless you are specifying the value of the parameter f. So, let us consider the signs of a p 

naught and note that, we should have a p naught greater than 0. You can also put an 

equality with the sense, that it can be greater than or equal to 0; now, what happens with 

f equal to 0; f equal to 0 will give you a p naught is equal to rho C p delta x by delta t 

minus k e by delta x e minus k w by delta x w. 
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Now, for algebraic simplification, let us consider that k e and k w, all are same as a 

uniform thermal conductivity value of the material; the material has uniform thermal 

conductivity, and delta x e equal to delta x w equal to delta x. So, what it means is, if you 

have a grid layout, this is delta x; this is delta x e. This is true, when all the grid points 

are equidistant; then and if you have the grid point at mid way between the faces of the 

control volume, then you can have delta x e equal to delta x w equal to delta x, that is 

uniformly laid out grid points.  



So, if that is the case, then we can write this one as rho C p. Now, what are the conditions 

for a p naught to be greater than 0 or greater than equal to 0? You must have rho C p 

delta x by delta t, greater than equal to 2k by delta x which implies alpha delta t by delta 

x square less than or equal to half, where alpha is the thermal diffusivity which is k by 

rho C p. In conduction heat transfer, alpha into some characteristic time by characteristic 

lane square is called as Fourier number. So, this is like a grid spacing, and time step size 

based Fourier number less than equal to half; this is called as a stability criteria. We will 

later on see that, what do you mean by stability here for the explicit scheme. 

So, what we mean by stability criteria here or what do you mean by stability here? Now, 

when you are doing any numerical calculations, the calculations are susceptible to round 

of errors, because you may not be able to represent the number with limited decimal 

points as the correct number. So, there will be some approximate representation of the 

number, because of limited number of digits beyond the decimal point that you can use. 

Now, that is an error; with calculation, this error can propagate and can get amplified. So, 

if such round off error gets amplified, as the numerical solution proceeds, the 

corresponding scheme is considered to be, if it is inherent to the scheme itself, it is 

considered to be an unstable scheme. 

Now, one of the key requirements of having a stable scheme is that, you should have a 

consequence of the scheme, that is physically consisted; that means, if all coefficients are 

of the same sign, then increasing the temperature at a particular point will ensure that 

temperature will be increased at all other neighboring points, but not decreased. So, that 

means, despite the perturbation being present, you will get physically meaning full 

solutions. We will look into a different mathematical angle of the stability, subsequently, 

but what we can see here from physical arguments, that we say that this scheme is stable. 

So, long as all coefficients of the differential, all coefficients of the descretized equation, 

algebraic descretized equation, they are of the same sign. 

Now, what does these criteria effectively mean? So, you have we have derived a criteria. 

What will you do with these criteria, when you are working out a problem numerically? 

So, you have to be careful about your time step. What we in general intend to do to get a 

highly defined solution? We reduce the grid size spacing. So, when you reduce the grid 

size spacing by delta x by whatever, you can see that the corresponding time steps size 

also should be reduced, matching with this requirement. So, you cannot indiscriminately 



use a large time step size; the time step size is limited by the grid spacing. So, you can 

clearly see, that the this ratio is a ratio of 2 time scales; T1 and T2. What is T1? T 1 is 

delta t. And what is T2? Delta x square by alpha. What is delta x square by alpha? It is 

the characteristic time, over which a thermal disturbance propagates by thermal diffusion 

in a medium. So, alpha is, if you recall that it is thermal diffusivity. So, it is thermal 

conductivity relative to the rough into C p; that means, it is the ability of the material to 

conduct thermal energy relative to the storage ability of thermal energy; so, that means, 

when you have this alpha, this alpha is a characteristic is an is an indicator of how fast 

the thermal disturbance is able to propagate within a medium, relative to its storage 

capability, and if delta x is the corresponding length scale, that you are talking about, 

then what is the characteristic time, that takes the thermal disturbance to cover that link 

scale delta x is given by delta x square by alpha.  

So now, what you are comparing is, how much is your time step size in resolution as 

compared to this characteristic time scale of the system. So, the system has a 

characteristic time scale of adjustment of thermal disturbance. So, e there is a thermal 

disturbance that is imposed on the system, and the system adjust to itself. So, it takes a 

time, characteristic time to adjust to itself. So, this is the characteristic time, that it takes 

to adjust to itself over a length of delta x. So now, what is the time step that you choose 

in comparison to that? Here it says that, the time step that you choose in comparison to 

that must be less than or equal to half of the characteristic time scale of the adjustment of 

the system with respect to the imposed disturbance. 

So, you you you cannot indiscriminately use a large time step, but your time step size is 

restricted by the system’s ability to respond to a particular disturbance in thermal 

diffusion through thermal diffusion. So, this is the stability criteria and once there is a 

scheme which has a stability criteria; that means, you cannot indiscriminately use any 

large time step; you you have to use a restricted time step; then it is called as 

conditionally stable scheme; that means, the scheme will work, provided you use a time 

step size less than or equal to a particular constraint, that is determined from the 

discretized equation. 

Let us, look into the case with f equal to 1; when f equal to 1, you can clearly see that 

these two minus signs go away, and a p naught is positive. So, all co-efficients are of 

same sign; that means it is unconditionally stable. So, what we have inferred out of this 



is, with any positive or advantageous effect, there is always a limitation; the explicit 

scheme, that is f equal to 0 had a positive or advantageous effect; that is, you could 

explicitly express the value of the variable in terms of the value of all the neighbors 

including the time neighbor, and calculate it on the basis of individual equations, rather 

than having to solve us. See connected system or coupled system of algebraic equations. 

So, solution of couple system of algebraic equations was not necessary for that scheme, 

but the cause that you have to pay is that, you have to use a time step size less than a 

critical one; you cannot use any large time step size. 

On the other hand, for the fully implicit scheme, you can use any large time step size. Of 

course, if you want to capture a particular transient that is according within a particular 

time scale, you have to use the time scale less than that one, but that is for capturing the 

details, but at least to get a physically meaningful solution, you do not have to be 

bothered about the time step. On the other hand, the scheme has the disadvantage or 

rather limitation; if not a disadvantage, that you have to solve the coupled system of 

algebraic equations for the fully a implicit scheme. What about f equal to point 5, which 

is the Grant Nicholson’s scheme. 

So, if you consider the same case with all the thermal conductivities thermal 

conductivities throughout the domain being the same and uniformly spaced grids; then 

you have the stability criteria as rho C p delta x by delta t minus 2k by delta x into half, 

because f is equal to half. So, that will give you alpha delta t by delta x square, less than 

equal to 1. It is of course, a more relaxed requirement than the fully explicit scheme, but 

it still has a constraint. 

So, this is also conditionally stable; sometimes in some literature, the Grant Nicholson’s 

scheme is referred to as an a unconditionally stable scheme, but the notion that those 

literatures possibly use is not same as the concept that we are trying to invoke here; our 

idea is to see, that you get a physically meaningful solution. See, if we if the scheme is 

stable, that means, if there are oscillations in the numerical solution, because of round of 

errors; those oscillations will be dampened out, but even after the oscillations being 

dampened out, you may not get a physically realistic solution; the oscillations may get 

dampened out, and the solution may converse to something which is not physically 

meaningful. 



So, here we are trying to go beyond mathematical stability requirement; mathematical 

stability requirement will just ensure that, the oscillations in the solution will die down. 

But once the oscillations die down, the that is the solution is converging to something. Is 

it converging to the physically acceptable solution that you are looking for? It need not 

always be. So, when you are considering the same sign of all the coefficients, you are 

ensuring that additional features also; that is, you are having the solutions converse to 

something which is physically meaningful. Now, so far we have discussed about the 

consequences of the discretization scheme from a finite volume discretization angle; 

now, we would also like to draw a parallel analogy with the finite default discretization 

of the time and the space coordinates. 

(Refer Slide Time: 16:56) 

 

So, what we will try to do is, we will try to see the consequences of time discretization in 

Finite difference. We have briefly introduced the finite difference method earlier; and we 

will take it up from there; and see that how we can have different types of schemes 

which have different behavior; we have made one important remark earlier, that the 

Finite difference method is essentially an outcome of a Taylor series expansion of the 

derivative terms, in terms of algebraic differences; now, when you do that, you can do it 

of course, by truncating the Taylor series up to certain number of terms; when you do 

that, you will get some algebraic equations, but will those equations work or not in all 

cases; that is the matter of debate, and that is something that we would like to highlight 

on. 



So, we would specifically like to see that, what are the Errors associated in the Finite 

difference discretization or any Taylor series based discretization. To do that, we will 

consider certain terminologies; first we will consider the terminology consistency to 

appreciate the term consistency. So, consistency is a characteristic of a numerical 

scheme; we say that the scheme is consistent 

So, what we mean by consistent is that, when we are discretizing a particular problem, 

we are representing the behavior that was supposed to be represented by a differential 

equation with some algebraic equation. So, the algebraic equation now has the 

responsibility of representing the behavior of the system which is differential equation in 

terms of its representation. So, there is a conflict there is a conflict, that the system 

behavior was suppose to be represented by a differential equation; now you are 

representing it by some algebraic equation. In the limit, as the grid spacing and the time 

step size spacing tends to 0. 

If your algebraic equation mimics the behavior of the governing differential equation 

exactly, then we say that the scheme is consistent. So, when that is possible? It is 

possible only when the error incurred because of the discretization is nullified at very 

small grid size and very defined time step; and when you expect to expect that to 

happen? You expect that to happen, when the terms that you neglected in the Taylor 

series, turn out to be limiting small or 0, in the limit of small brick size and time step; 

and those that error associated with neglecting the terms in the Taylor series beyond a 

particular term; that type of error is known as truncation error. 

So, truncation error is what? Truncation error. So, consistency essentially deals with 

nullification of truncation error, as the grid size and the time step in the limit tends to 0. 

So, nullification of truncation error as grid size and time step size tends to 0 in the limit 

which implies that, the discretized equation tends to behave same as the governing 

differential equation; the difference, because of negligence of certain terms in the Taylor 

series vanishes, because the corresponding terms tend to 0 as delta x delta t all tend to 0.  

So, a scheme will be consistent, how do you test it? You can test it by checking the 

truncation error. So, the truncation error will have certain terms which will be functions 

of delta x and delta t; you put the limit as delta x tends to 0 and delta t tends to 0 

separately; and see that when you consider them together, that is delta x tends to 0 and 



delta t tends to 0, the terms which contribute to the truncation error, the terms will tend to 

0; then, as if your algebraic equation and the governing differential equation, they are 

behaving in the same way.  

So, a scheme has to be consistent, and if it is not consistent, the corresponding 

inconsistency is because of non-nullification of the truncation error in in in this limit; 

that is a truncation error means; even if delta x and delta t are tending to 0. We have to 

remember that we are not checking the truncation error as a basis for finite size delta x 

and delta t, because we we can understand from common sense that, when delta x and 

delta t are finite size truncation error will remain, because we have truncated the Taylor 

series up to a finite number of terms; that is obvious, but when we truncate the Taylor 

series up to a finite number of term, but take the limit as delta x and delta t tends to 0, 

then at least and in that limiting condition, it should the truncation error should be 0. So, 

we are checking the consistency in the limiting condition of delta x and delta t tending to 

0, and checking the Truncation Error has to be 0 at that condition 

The next is stability; now, just like consistency talks about the truncation error, stability 

talks about the round of errors. So, when you have a number, e represented by a decimal 

system for example, you are using certain digits, number of digits, fixed number of digits 

beyond the decimal; that is based on the precession of the computer that you are using, 

but is not infinite precession; that means, you cannot use infinite numbers of digits. So, 

always there will be a error due to rounding off, and this error can propagate within the 

calculations, and they can amplify. 

So, if the errors propagate, the round of errors propagate and then can amplify; so, the 

round of errors in a numerical scheme is like a physical perturbation. So, let us say that 

you you wanted to calculate a number 1 by 3, but you are truncating it; two are finite 

number of digits beyond the decimal. So, you get point 3 3 3 up to something. So, 1 by 3 

was the actual thing that you desire for; and this is its representation; and the 

corresponding differences like a perturbation or disturbance to the calculation of 

numbers; and how strongly this perturbation propagates, because of by virtue of the 

numerical calculations is also a characteristic of the numerical scheme. 

So, stability if the scheme is stable, then it says that, there is no amplification of 

numerical perturbations due to propagation of round of Errors. So, by ensuring 



consistency and stability, we are ensuring that the truncation error and the round off error 

are not creating an havoc to the numerical solution, and if that is ensured, then then for 

the linear problems then you can say the convergence is also ensured. So, the next 

important terminology is convergence; this is what is the ultimate goal for the numerical 

solution, and the concept of convergence is that, in the limit, as the grid spacing and the 

time step size spacing tends to 0, the numerical solution will tend to the exact solution; 

now, there is a very important theorem which is known as lapse equivalent theorem 

equivalent theorem which states that, I am not going to state the theorem in a very formal 

way, but which essentially means that, for linear problems, consistency plus stability if 

you can ensure these two, this will automatically ensure that there is convergence. 

So, consistency plus stability implies convergence, but very importantly only for linear 

problems; for non linear problems, consistency plus stability may not ensure may not 

ensure that there is convergence; one of the key reasons is that, for non-linear problems 

you could have multiple solutions. So, it is it is not automatic that for non-linear 

problems, consistency plus stability together will ensure that there is convergence. So, 

for non-linear problems what you do? Usually for non-linear problems, we test 

convergence in this way. We test the problem with a particular grid size and time step; 

then we go on reducing the grid size, and reducing the time step, and we come to a stage, 

when we see that, even if you reduce the size of the grid, even if you reduce the size of 

the time step, that is further refinement of the grid and refinement of the time step, the 

solution does not get refined any more.  
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We say that the solution has become grid independent and time step independent.. So, a 

grid independence or time step independence study is what is required for a non-linear 

problem. If you just have a consistency and stability, that does not automatically ensure 

convergence for a non-linear problem, and when we will be doing the full solution of the 

Navier stokes equation, we should keep in mind that, because those non-linear equations, 

essentially consistency and stability will not just be enough; we have to check the grid 

independence and time step independence for solution of such problems. 

So, we have now got of here idea of the sources of errors, that could be there in a 

discretization method, and in particular in reference to the Finite difference scheme. 

Now, let us look into certain examples of Finite difference schemes, and see that how do 

this Errors matter. So, we will consider Finite difference scheme for unsteady one 

dimensional unsteady diffusion type of problems. Just the corresponding cases on finite 

volume, we are studied the similar problems with Finite difference, now we will study. 
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So, finite difference schemes on one dimensional unsteady state diffusion problems. So, 

the governing equation is this one, where we have assume a constant thermo physical 

property; that is density, specific heat and thermal conductivity all are constants. So, 

assume constant properties. 

So, you can write where alpha is k by rho C p which is the thermal diffusivity which we 

discussed physically also; now, this prototype equation has a time component in it, and a 

space component in it. So, depending on the differencing scheme that we can use for the 

time and the space, there are different Finite difference schemes. So, if you recall that we 

had different types of finite different descretization like forward difference, backward 

difference, central difference like that. So, for example, we can use a forward difference 

sign for time, and central difference for space. So, that we call as FTCS; forward FT for 

forward time, and CS for central space so, forward time central space. So, let us write the 

corresponding Taylor series expansions. While doing, so what we will do is, we will use 

some notations that are common to Finite difference.  
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So, let us write the corresponding Taylor series expansions. While doing so, what we will 

do is, we will use some notations that are common to finite difference. What are these 

notations? We consider one grid point which is the grid point p that we were considering 

for the finite volume; the same we will use an index i; i plus 1 for e i minus 1 for w. So, 

just to give the analogy of the nomenclature; and super script n for current time; and n 

minus 1 for previous time; and n plus 1 next time . 
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So, we can write Ti n plus 1. What is Ti n plus 1? This is T; at time t plus delta t actually, 

at the grid point i; that is at x;, i is x this is x plus delta x this is x minus delta x. So, Ti n 

plus 1 is equal to. So, we are writing keep in mind that we are writing T at time t plus 

delta t; we can write it in Terms of T at time t. 

So, we can write this as T i n. So, this is T plus delta t; this is t, and this is sorry this t 

minus delta t, and this is t. So, T i n plus 1 is equal to T i n plus, plus if we consider the 

higher order terms, that is of the order of delta tq. So, we can write minus plus of the 

order of delta t square; order does not get change with sign. So, it is just division by delta 

t makes it order of delta t square. So, if you now truncate the Taylor series up to this 

term, then this is the representation of the forward difference for the first ordered time 

derivative. 

What about the second order special derivative? So, when you consider the special 

derivative, see, when we considered the time derivative, we kept the special position as 

constant i and change the time. So, here for the special derivative, we will fix the time; 

fix keep the time fixed, and vary the special coordinate. So, T i plus 1 n is equal T i n; we 

are not writing super script n everywhere, but it all are super script n; similarly, T i minus 

1 n is T i n with a minus sign, now it will be. So, delta x become minus delta x, that is the 

only change. Now, if you add this 2Ti plus 1 n plus T i minus 1 n is equal to 2 T i n; then 

plus del square T del x square i into delta x square cube terms will go away; fourth order 

term will remain delta x4 by 12; then fifth order Terms will cancel. So, what will remain 

is of the order of delta x6, which one? which one 

No, we have not yet divided by delta x square; this is alright; this is we have not divided 

this by delta x square. So, next step will be to divide both sides by delta x square, by 

delta x square minus delta x square by 12 plus of the order of delta x4. So, here also we 

will be truncating it up to this one which is the central difference scheme for the special 

second order special derivative. So, let us now substitute these expressions in the 

governing differential equation. 
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So, the time derivative Ti n plus 1 minus Ti n by delta t. minus Let us write it with the 

different color to indicate that, this is an Error Term minus de l4T del x4 delta x square 

by twelve plus of the order of delta x4. So, the terms that we have written with black 

color are the terms that are going to matter. There is alpha in the right hand side. So, let 

us multiply alpha, all the terms in this way. So, the terms that are going to matter for the 

descretized equation are the terms which are written in the black color, but the terms 

which are written in the red color are important because they can give rise to the 

understanding of the Errors, because of omission of those terms. 

So, let us do that analysis; let us try to write; let us first consider interestingly, these 2 

terms; this term and this Term, now this particular term; 4th order derivative of 

temperature with respect to x, that you can attain or that you can obtain by differentiating 

the governing differential equation, twice more with respect to x. So, governing 

differential equation, if you partially differentiate it twice more with respect to x, then 

what this will give? Similarly, you can differentiate the governing differential equation 

once with respect to time to get del square T, del T square. 

So, governing differential equation, if you partially differentiate with respect to time, you 

will get… So, what we can conclude from here? We can find the relation between the 

first leading order term, because of truncation with respect of time discretization, and the 



first leading order term, because of the truncation with respect to the special 

discretization. 
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So, we can write, del square T, del T square is equal to alpha; del cube T, del T, del x 

square, that is equal to alpha square; del 4T, del x4, just check whether this is all right. 

So, if you compare this, let us call it Term 1 and let us call it Term 2. So, Term 1 minus 

Term 2 is what? Is equal to alpha square del 4T del x4 into delta t by 2 minus alpha delta 

x square by 12 del 4T del x4. So, if you take alpha del 4T, del x4 as common, then here 

you have alpha delta t by 2, minus delta x square by 12 in the bracket. So, you can see 

that if this term in the bracket is not equal to 0, then what is the order of accuracy of this 

discretization? Order of delta t is the Error for time, and order of delta x square for space.  

So, first order in time and second order in space, but to understand what is that, but we 

have derived this particular term; now, if you see that, if this Term becomes 0, then it 

becomes the of the order of the delta t square for time and of the order of delta x4 for 

space because then these these are cancelled; when term 1 is equal to Term 2, this (( )) 

terms in the box in the 2 sides, they get cancelled. When do they get cancelled therefore? 

They get cancelled; this 0, when alpha delta t by 2 minus delta x square by 12 equal to 0; 

that means, alpha delta t by delta x square is equal to 1 by 6; of course, this is a possible 

choice. 



So, 1 can make a choice of alpha delta t by delta x square equal to 1 by 6; then this term 

will become 0, and then it will be of the order of delta t square with respect to time and 

of the order of delta x4 with respect to space. So, this is about the temporal and special 

accuracy of the method. The next question comes, that is the scheme consistent number 

1; number 2 is the scheme stable. So, we will try to give answers to these questions. In 

today's class, we will look into the consistency of the scheme, and in the subsequent 

lecture, we will look into the stability of the scheme. So, is it consistent? When we say 

that it is consistent? We say that it is consistent, when in the limit as delta t and delta x 

tends to 0; the truncation error tends to 0. So, what is the truncation error? The truncation 

error is represented by the rate color terms which are there in the 2 sides.  

So, if you make delta t and delta x tends to 0; then, obviously, they will in the limit be 

tending to 0. So, something some expression which has directly been derived from the 

Taylor series, automatically ensures that the truncation error becomes 0, as delta t and 

delta x tends to 0, but if some how you want to temper the expressions that you get from 

Taylor series expansion; we will see there are certain schemes which attempt to do that; 

that they tend to temper the expression that you get from the Taylor series in an effort to 

achieve something more special, and in that way they can create problems with respect to 

consistency, but here it is simply an outcome of Taylor series based expansion of the 

derivative terms, and therefore, it it it is true that is a consistent scheme. 

The next important point, that we will try to access in the next class is that whether the 

scheme is stable or not, and what we mean by a stability here is that, if you have a 

perturbation in some numerical values say of a temperature at a particular grid point, 

then thus that perturbation get amplified with time. So, as you proceed or merge ahead 

with time, remember these are all time merging schemes. So, as you merge a head with 

time, you you may see that those errors are propagating and the errors are therefore, 

getting amplified. So, we have to find out a mechanism, that will tell us mathematically 

whether the Error will get amplified or the Error will die down, and that we will take up 

in our next lecture. Thank you.  


